• Title/Summary/Keyword: Yeast transcription

검색결과 132건 처리시간 0.032초

분열효모에서 sphpr1 유전자의 결실이 생장 및 mRNA Export에 미치는 영향 (Effects of the Repression of sphpr1 Expression on Growth and mRNA Export in Fission Yeast)

  • 이현주;윤진호
    • 미생물학회지
    • /
    • 제48권2호
    • /
    • pp.171-174
    • /
    • 2012
  • THOC1/Hpr1는 mRNA가 전사되는 동안 mRNP의 포장과 mRNA 방출에 관여하는 진화적으로 잘 보존된 THO 복합체의 한 소단위이다. 분열효모 Schizosaccharomyces pombe에서도 THOC1/Hpr1과 유사한 단백질을 암호화하는 유전자(sphpr1로 명명)를 찾아 그 특성을 조사하였다. 이배체 S. pombe 균주에 하나의 sphpr1 유전자만을 결실시킨 후 4분체 분석을 수행한 결과, 이 유전자는 생장에 필수적이었다. 티아민에 의해 발현이 조절되는 강력한 nmt1 프러모터를 이용하여 sphpr1를 과발현시키더라도 세포의 생장과 mRNA 방출에는 전혀 영향이 없었다. 하지만, sphpr1의 발현을 억제하면 생장이 억제되었으며 poly$(A)^+$ RNA가 핵 안에 축적되었다. 이와 같은 결과들은 sphpr1 유전자가 생장과 mRNA의 핵에서 세포질로의 방출에 관여하고 있음을 시사한다.

Molecular Analysis and Expression Patterns of the 14-3-3 Gene Family from Oryza Sativa

  • Yao, Yuan;Du, Ying;Jiang, Lin;Liu, Jin-Yuan
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.349-357
    • /
    • 2007
  • The ubiquitous family of 14-3-3 proteins functions as regulators in a variety of physiological processes. Eight rice 14-3-3 genes, designated OsGF14a through h, were identified from an exhaustive search of the genome database. Comparisons of deduced amino acid sequences reveal a high degree of identity among members of the OsGF14 family and reported Arabidopsis 14-3-3 proteins. A phylogenetic study indicates that OsGF14s contain both $\varepsilon$ and non-$\varepsilon$ forms, which is also confirmed by a structural analysis of OsGF14 genes. Furthermore, transcripts of OsGF14b, OsGF14c, OsGF14d, OsGF14e, OsGF14f and OsGF14g were detected in rice tissues. Their different expression patterns, the different effects of environmental stresses and plant hormones on their transcription levels, and the different complementary phenotypes in yeast 14-3-3 mutants not only indicates that OsGF14s are responsive to various stress conditions and regulated by multiple signaling pathways, but also suggests that functional similarity and diversity coexist among the members of OsGF14 family.

분열효모에서 spThoc7 유전자의 결실이 생장 및 mRNA Export에 미치는 영향 (Effects of spThoc7 Deletion on Growth and mRNA Export in Fission Yeast)

  • 고은진;윤진호
    • 미생물학회지
    • /
    • 제50권3호
    • /
    • pp.249-253
    • /
    • 2014
  • THOC7/Mft1는 mRNA가 전사되는 동안 mRNP의 포장과 mRNA 방출에 관여하는 진화적으로 잘 보존된 THO 복합체의 구성인자이다. 분열효모 Schizosaccharomyces pombe에서 THOC7/Mft1의 이종상동체(spThoc7)가 합성치사 돌연변이체 SLRsm1의 생장 결함을 부분적으로 상보하는 것으로 선별되었다. 이배체 S. pombe 균주에 하나의 spthoc7 유전자만을 결실시킨 후 4분체 분석을 수행한 결과, 이 유전자는 생장에 필수적이지 않았다. 하지만, ${\Delta}thoc7$ 결실돌연변이는 생장과 mRNA의 핵에서 세포질로의 방출에 약간의 결함을 보였다. 기능을 하는 spThoc7-GFP단백질은 주로 핵 안에 존재하였다. 이와 같은 결과들은 spThoc7도 mRNA 방출에 관여하고 있음을 시사한다.

Molecular Cloning and Expression of Grass Carp MyoD in Yeast Pichia pastoris

  • Wang, Lixin;Bai, Junjie;Luo, Jianren;Chen, Hong;Ye, Xing;Jian, Qing;Lao, Haihua
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.22-28
    • /
    • 2007
  • MyoD, expressed in skeletal muscle lineages of vertebrate embryo, is one of muscle-specific basic helix-loop-helix (bHLH) transcription factors, which plays a key role in the determination and differentiation of all skeletal muscle lineages. In this study, a cDNA of grass carp MyoD was cloned and characterized from total RNA of grass carp embryos by RT-PCR. The full-length cDNA of grass carp MyoD is 1597 bp. The cDNA sequence analysis reveals an open reading frame of 825 bp coding for a protein of 275 amino acids, which includes a bHLH domain composed of basic domain (1-84th amino acids) and HLH domain (98-142th amino acids), without signal peptide. Then the MyoD cDNA of grass carp was cloned to yeast expression vector pPICZ$\alpha$A and transformed into P. pastoris GS115 strain, the recombinant MyoD protein with a molecular weight of about 31KD was obtained after inducing for 2d with 0.5% methanol in pH 8.0 BMGY medium, and the maximum yield was about 250 mg/L in shaking-flask fermentation. The results were expected to benefit for further studies on the crystal structure and physiological function of fish MyoD.

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Lu, Zhang;Cui, liuqing;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1876-1884
    • /
    • 2020
  • Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae

  • Kho, Chang-Won;Lee, Phil-Young;Bae, Kwang-Hee;Kang, Sung-Hyun;Cho, Sa-Yeon;Lee, Do-Hee;Sun, Choong-Hyun;Yi, Gwan-Su;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.270-282
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.

Effects of the Heptasequence SPTSPTY of Rat Nuclear Factor 1-A on Interactions between the C-Terminal Regions of Mammalian Nuclear Factor 1 Proteins

  • Hwang, Jung-Su;Kim, Ji-Young
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.519-524
    • /
    • 2000
  • NF1 proteins are a family of DNA binding proteins which consist of two separate domains, N-terminal DNA binding domain and C-terminal transcription activation domain. The N-terminal 220 amino acids are highly conserved and are also known to mediate dimerization of NF1 proteins. The C-terminal regions of different type of NF1 proteins are heterogeneous and responsible for transcriptional activation. In this study, we tested the interaction between different domains of rat NF1-A protein by yeast two hybrid analysis and observed the interaction between C-terminal regions of NF1-A which do not contain the N-terminal dimerization domain. Our results showed that the C-terminal region of rat NF1-A between residues 231 and 509 strongly interacted not only with itself, but also with human NF1/CTF1 which is a different type of NF1. When the C-terminal region was divided into two fragments, one from residue 231 to 447 and the other from 448 to 509, the two fragments were able to interact with the C-terminal region of NF1-A significantly. This indicates that both fragments contain independent interaction domains. Analysis of the interactions with alanine substituted fragments showed that substitutions of the heptasequence, SPTSPTY of NF1-A, affected interaction between NF1 proteins. Our results strongly suggest that C-terminal regions may also be important for the formation of homo- and heterodimers in addition to the N-terminal dimerization domain. Also, the heptasequence motif may play some roles in dimer formation.

  • PDF

Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis

  • Zhang, Yang;Chen, Chen;Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Hong, Yi-Huan;Yao, Quan-Hong;Chen, Jian-Min
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.486-492
    • /
    • 2009
  • OsDREB1D, a special DREB (dehydration responsive element binding protein) homologous gene, whose transcripts cannot be detected in rice (Oryza sativa L), either with or without stress treatments, was amplified from the rice genome DNA. The yeast one-hybrid assay revealed that OsDREB1D was able to form a complex with the dehydration responsive element/C-repeat motif. It can also bind with a sequence of LTRE (low temperature responsive element). To analyze the function of OsDREB1D, the gene was transformed and over-expressed in Arabidopsis thaliana cv. Columbia. Results indicated that the over-expression of OsDREB1D conferred cold and high-salt tolerance in transgenic plants, and that transgenic plants were also insensitive to ABA (abscisic acid). From these data, we deduced that this OsDREB1D gene functions similarly as other DREB transcription factors. The expression of OsDREB1D in rice may be controlled by a special mechanism for the redundancy of function.

Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs

  • Da Yoon, Yu;Sang-Hyon, Oh;In Sung, Kim;Gwang Il, Kim;Jeong A, Kim;Yang Soo, Moon;Jae Cheol, Jang;Sang Suk, Lee;Jong Hyun, Jung;Jun, Park;Kwang Keun, Cho
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1184-1198
    • /
    • 2022
  • In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.

Cloning된 효모의 RNAI 유전자의 특성에 관하여 (Characterization of the cloned RNA1 gene of Saccharomyces cerevisiae)

  • 송영환;김대영;김진경
    • 한국어병학회지
    • /
    • 제6권2호
    • /
    • pp.93-101
    • /
    • 1993
  • 효모의 RNAI유전자는 RNA processing에 관여 하는지 혹은 RNA transport에 관여 하는지 아직까지 유전자의 기능이 정확히 알려져 있지 않은 실정이다. 효모의 RNAI 유전자의 기능을 파악하기 위한 방법으로 본 연구에서는 rna1-1 mutant gene을 cloning하여 이에 대한 DNA sequence를 조사함으로써 RNAI 유전자와 rna1-1 유전자의 차이점을 이해하고자 하였다. rna1-1 marker를 갖는 yeast strain(R49)로 부터 genomic DNA를 추출하여 이를 BglII로 절단하여 genomic southern blotting을 행한 결과 wild type의 경우와 동일하게 3.4 kb에서 hybridization되는 signal을 얻었으며, RNAl 및 rna1-1이 yeast genome내에 single site로 존재함을 보여 주는 결과를 얻었다. mutant strain으로 부터 얻은 3.4 kb의 BglI fragment를 pUC19의 BamHI site에 subcloning하여 transformant들을 얻었고, wild type RNAl 유전자를 probe로 하여 rna1-1 mutant 유전자를 cloning할 수 있었다. pUC19에 cloning된 RNA1유전자 및 rna1-1유전자로부터 다양한 Ba131유도체를 얻어 이들에 대한 염기 서열을 비교한 결과 transcription initation site에서부터 down stream쪽으로 17 아미노산위치에 TCC가 TTC로 대치되어 있었으며 그 결과 serine이 phenylalanine으로 변환되는 결과를 얻었다. Wild type RNAI gene의 5'-region에는 3군데의 TATA-like sequence가 true TATA box인지 확인하기 위하여 Bal3I deletion에 의해 -103nt까지 deletion된 유도체를 얻었으며 ${\Delta}RNAI$, rna1-1, 81-2-6 clone이 rna1-1 allele와 complementation한지 확인하였으나 ${\Delta}RNAI$은 TS-complementation을 하지 못하였다. 따라서 현재까지 TATA-box라고 알려진 부분은 promoter로 작용하지 못함을 확인하였다.

  • PDF