• Title/Summary/Keyword: Yaw-checking

Search Result 13, Processing Time 0.025 seconds

A Simulator Study on Yaw-checking and Coursekeeping Ability in IMO's Ship Manoeuvrability Standards

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub
    • Journal of Ship and Ocean Technology
    • /
    • 제6권3호
    • /
    • pp.26-36
    • /
    • 2002
  • Yaw-checking and course-keeping ability in IMO's ship rnanoeuvrability standards is reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by five pilots in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMO criteria for yaw-checking and course-keeping ability are discussed and new criteria are proposed.

A Study on Yaw-checking and Course-keeping Ability of Directionally Unstable Ships

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub;Bae, Jun-Young
    • 한국항해항만학회지
    • /
    • 제27권6호
    • /
    • pp.631-638
    • /
    • 2003
  • Yaw-checking and course-keeping ability in IMO's ship manoeuvrability standards are reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by six operators(five active pilots and one ex-captain) in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMC criteria for yaw-checking and course-keeping ability are discussed and revised criteria are proposed.

침로불안정한 선학의 변침 및 보침 성능에 관한 시뮬레이터 연구 (A Simulator Study on Yaw-checking and Course-keeping Ability of Directionally Unstable Ships)

  • 손경호;이동섭
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.141-148
    • /
    • 2003
  • 본 연구에서는 선박의 안전항해의 관점에서 IMO조종성기준 중 변침 및 보침 성능에 관해 검토하였다. 침로불안정의 정도가 각각 다른 세척의 시리즈선박을 채택하여 지그재그시험에 관한 수치시뮬레이션을 수행하여 침로불안정의 정도와 오버슈트각 사이의 관계를 규명하였다. 그 결과 오버슈트각은 변침 및 보침 성능의 기준이 될 수 있음을 확인하였다. 그리고 자체개발한 시뮬레이터를 활용하여 시리즈선박의 항로항행에 관한 실시간 시뮬레이션 실험을 수행하여 선박의 조종난이도와 침로불안정의 정도 사이의 관계를 규명하였다. 아울러 수치시뮬레이션과 시뮬레이션실험 결과를 토대로 IMO조종성기준의 변침 및 보침 성능에 관한 새로운 안을 제시하였다.

  • PDF

선박의 조종성능과 조종곤란도의 상관관계 분석을 위한 협수로 항행 실시간 시뮬레이션

  • 손경호;양승렬;김용민;배준영;김진국;이동섭
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2002년도 춘계학술대회논문집
    • /
    • pp.3-10
    • /
    • 2002
  • Yaw-checking and course-keeping ability in IMO's ship manoeuvrability standards is reviewed from the viewpoint of safe operation. Three types of assumed series-ships, which have systematically different instability on course, are taken as tested models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in situation of curved, narrow of waterway by five pilots in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. Three kinds of IMO's criterion concerning yaw-checking and course-keeping ability are discussed and new criteria are proposed.

  • PDF

선형개조 선망선의 조종성능 (Maneuvering character of hull form renovated tuna purse seiner)

  • 홍진근;강일권;정성재
    • 수산해양기술연구
    • /
    • 제51권1호
    • /
    • pp.61-70
    • /
    • 2015
  • In an attempt to improve the maneuvering character of hull form renovated tuna purse seiner. A renovation was carried out on the 3 tuna purse seiner fishing vessel. To grasp the progress of maneuvering and resistance on ship B (730 ton class), new bulbous bow was only attached. The ship A (740 ton class) and C (600 ton class) were modified for new bulbous bow, enlarged slipway and rudder. And then the zigzag and the turning test were carried out. According to the turning test, the advance and the tactical diameter were improved very much for the modified ship. The sea trial was carried out for the original and modified ship A. It is showed that the results of sea trial corresponded with that of the tank test on the whole. In the result of the zigzag test on ship B, the turning ability was improved very much, but the yaw checking ability was deteriorated in just some degree. In the result of the zigzag test on ship C, the turning ability and yaw checking ability were remarkably improved. Ship C was greatly improved among the three ships for the maneuvering character of modified hull form.

실내 환경에서의 다수 드론 위치측정 정확도 향상 기법 (Enhancing Accuracy of Multi-drone Localization in Indoor Environment)

  • 푸옹;뉴엔휴;박용운;김준오;조경은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.697-698
    • /
    • 2016
  • In this paper, we propose a novel approach to improve the accuracy for multiple low-cost drones in indoor environment. When the drones are flying, we employ sensors for checking their position in real-time. If the drones move out of their correct positions, the corresponding instructions are sent immediately. In another thread, we calibrate direction of the drones by checking yaw value. The adjustment is repeated until the drones locate at right position and direction.

팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현 (Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control)

  • 박세준
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.201-206
    • /
    • 2016
  • 비상체가 자세를 유지하기 위한 자세기준에는 비상체의 무게중심을 지나 서로 직교하는 3축을 취하는데 그것을 각각 롤(roll)축, 피치(pitch)축, 요(yaw)축 이라 부른다. 자세측정 장치는 이 3축에 대한 변동을 검출하는 센서이다. 본 논문에서는 HMD에 자세측정 장치를 부착하고. 이동로봇플랫폼에 팬틸트를 장착하여 카메라를 제어한다. 가속도센서는 진동에 매우 취약하기 때문에 센서데이터에 노이즈가 심하게 발생하며, 센서데이터를 매핑(mapping)하는 과정에서 데이터들의 간격이 많이 벌어지는 문제도 발생한다. 이러한 문제점을 해결하기 위해 평균필터와 Cosine Interpolation을 적용하여 팬틸트 동작을 방해하는 요소를 제거하였다. 제안한 성능을 평가하기 위해 실외환경에서 HMD에 부착한 센서데이터를 원격으로 전송하여 이동로봇에 탑재된 팬틸트 카메라를 제어하였다. 실험결과 약간의 지연은 발생하였으나 비교적 안정하게 팬틸트 카메라가 제어됨을 확인할 수 있었다. 또한, 이동로봇은 평지나 경사면 등 어떠한 지형에서도 주행이 가능함을 확인할 수 있었다.

RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구 (Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS)

  • 이성욱
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis

  • Jeon, Myungjun;Yoon, Hyeon Kyu;Hwang, Junho;Cho, Hyeon Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.508-519
    • /
    • 2018
  • In order to design the hull form of an underwater vehicle in the conceptual design phase, the dynamic characteristics depending on the hull form parameters should be identified. Course-keeping stability, turning ability, yaw-checking ability, and mission competence are set to be the indices of the dynamic characteristics, and the geometric parameters for the bare hull and rudder are set to be the hull form design parameters. The total sensitivity of the dynamic characteristics with respect to the hull form parameters is calculated by the chain rule of the partial sensitivity of the dynamic characteristics with respect to the hydrodynamic coefficients, and the partial sensitivity of the hydrodynamic coefficients with respect to the hull form parameters. Based on the sensitivity analysis, important hull form parameters are selected, and those optimal values to satisfy the required intercept time of mission competence of a specific underwater vehicle and turning rate are estimated.

Estimation of the manoeuvrability of the KVLCC2 in calm water using free running simulation based on CFD

  • Kim, In-Tae;Kim, Cheolho;Kim, Sang-Hyun;Ko, Donghyeong;Moon, Seong-Ho;Park, Hwanghi;Kwon, Jaewoong;Jin, Bongyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.466-477
    • /
    • 2021
  • There are three different well-known methods for predicting the manoeuvrability of ships: (1) free running model test, (2) direct manoeuvring simulation using CFD and (3) system-based manoeuvring simulation. In this paper, the manoeuvrability of the KVLCC2 was estimated using CFD with rigid body motion and body force propeller method. The free running manoeuvre at the different time steps were also simulated. The yaw checking ability and the turning ability of KVLCC2 were predicted using CFD and could have been confirmed that the IMO criteria was satisfied. When the results were compared with the model test and system-based method, the free running simulation showed better agreement to that of the model test. It could also be confirmed that the results vary depending on the time step. Overall, the CFD results using the body force propeller method estimated most accurately the test results.