• 제목/요약/키워드: Yaw drive

검색결과 43건 처리시간 0.02초

풍력 발전기용 요 드라이브의 가속수명시험 조건에 관한 연구 (A Study of Accelerated Life Test Conditions for Yaw Drive of Wind Turbine)

  • 이용범;강보식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권4호
    • /
    • pp.213-219
    • /
    • 2014
  • Wind turbine, which is attracting part of the renewable energy and is researching continuously, is going to be large size for high efficiency. There is a yaw system rotating the nacelle, weighted about 600 tons, to be perpendicular with the wind direction blowing in the large wind turbine. The wind turbine is focusing on the reliability improvement because working environment effect is bigger than any other points and specially, the reliability improvement of the yaw drive is required by the customer because it is the key component of the wind turbine. Because of this, the establishment of criteria for yaw drive is required because yaw drive system is the part of the wind turbine closely related with ensuring the reliability. So, this study did the failure analysis of the yaw drive system, which is consisted with 10 sets of yaw drives through researching and analyzing the site conditions. Also this study designed the life test method based on the failure analysis and working condition of the yaw drive. To design the accelerated life test of the yaw drive, this study reviewed the torque, lubrication condition, and frequency of use and etc. Finally, this selected the torque as the acceleration factor which is affected mainly to the system and also, the test equipment was developed based on the requirement of the life and performance test.

풍력 터빈의 요 시스템 설계 (Design of Yaw System of Wind Turbine)

  • 이현주;최원호;안경민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.277-280
    • /
    • 2006
  • Using yaw system, Wind turbine can face the wind to make it's electricity generating maximum and to make it's fatigue load minimum. So, in wind turbine design process, selecting optimum yaw system is very important work. In this paper, the yaw moments on yaw bearing, yaw drive and yaw brake were calculated. and From the result, the duty cycle was obtained. At last, using this duty cycle, optimum yaw system is selected.

  • PDF

인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구 (A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions)

  • 김지웅;이경훈;우관제
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.

전자식 주행안전 장치를 위한 각속도 센서 개발 (Development of Angular Rate Sensor for an Electronic Stability Program)

  • 김병우
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.83-90
    • /
    • 2007
  • The vehicle dynamic control system needs to detect the yaw rate of vehicle and a yaw rate sensor is required as a central component. Therefore, A sensor on the basic of the "tuning fork method" for automotive controls is being developed. The sensor was fabricated by the surface micro machining process to miniaturize its size. The sensor output offset is ${\pm}0.37^{\circ}/sec$ in the room temperature. The resonance frequency of the fabricated yaw rate sensor is measured to 5.29kHz for the drive mode. Tests of the sensor demonstrate that its performance is equivalent to that required for implementation of a yaw control system. Vehicle handling and safety are substantially improved using the sensor to implement yaw control.

8 MW급 대용량 풍력발전기용 요 감속기 치합전달오차에 따른 응답해석에 관한 연구 (A Study on Response Analysis by Transmission Error of Yaw Drive for 8 MW Large Capacity Wind Turbines)

  • 장서원;박세호;김영국;김민우;이형우
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.43-49
    • /
    • 2024
  • This study performed a response analysis according to the transmission error of the yaw drive. To perform the response analysis, the excitation source of the transmission error was modeled and the outer ring of the first stage bearing and the outer ring of the output shaft bearing were used as measurement positions. The response results were analyzed based on the vibration tolerance values of AGMA 6000-B96. As a result of the response of the first stage bearing outer ring, the maximum displacement of the first stage planetary gear system was 5.59 and the maximum displacement of the second to fourth stage planetary gear systems was 4.21 ㎛ , 3.13 ㎛ , and 25.6 ㎛ . In the case of the output shaft bearing outer ring, the maximum displacement of the first stage planetary gear system was 1.73 ㎛, and the maximum displacement of the second to fourth stage planetary gear system was 1.94 ㎛, 0.73 ㎛, and 2.03 ㎛. According to AGMA 6000-B96, the vibration tolerance of first stage is 17.5 ㎛, and the vibration tolerance of the second to fourth stages is 58 ㎛, 80 ㎛, and 375 ㎛, which shows that the vibration tolerance is satisfied and it is safe.

Design and experiment of fuzzy PID yaw rate controller for an electrically driven four wheel vehicle without steering mechanism

  • I, H
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.480-489
    • /
    • 1999
  • Design and experimental results of yaw rate controller is described for electricallydriven four wheel vehicle without steering mechanism. Yaw rate controller has been known to be necessary to cope with nonlinear char-acteristics of the wheel/road conditions with respect to different road condition and steering angle. For an effective yaw rate control, a fuzzy PID gain scheduler is considered with changing control parameters. In order to apply proposed algorithm to the system a downsized four wheel drive electrically driven vehicle without steering mechanism was manufactured. With these techniques the proposed yaw rate controller is shown by experiment results to be obtained suficient performance in the whole steering regions.

  • PDF

풍력발전기용 Yaw gearbox의 가속 수명시험에 관한 연구 (A Study on the Accelerated Life Test of Yaw Gearbox for Wind Turbine)

  • 이용범;이기천;이종직;임신열
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.16-21
    • /
    • 2024
  • The yaw gearbox is a key device in a wind power generator that improves power generation efficiency by rotating hundreds of tons (400 to 600 tons) of nacelle so that the blade reaches 90 degrees in the wind direction. Recently, installation sites have been advancing from land to sea as they have become super-large at (8-12) MW to increase the economic feasibility of wind power generators and utilize excellent wind resources, and the target life of large wind power generators is 25 to 30 years. The yaw gearbox of 6 to 12 sets is installed in a very complex place inside the nacelle on the tower with parallels, and it is important to secure the reliability of the yaw gearbox because if a failure occurs after installation, it costs tens to hundreds of times the price of a new product to restore. In this study, equivalent loads were calculated by analyzing failure mode and field data, accelerated life test conditions were established, and a test device was constructed to perform the accelerated life tests and performance tests to ensure the reliability of the gearbox.

휠 모터 구동 전기 버스의 차량 안정성 및 주행 성능을 고려한 통합 제어 로직 개발 (Development of Integrated Control Logic of Wheel Motor Drive Electric Bus considering Stability and Driving Performance)

  • 정종렬;최종대;신창우;이대흥;임원식;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.40-48
    • /
    • 2013
  • Recently, many types of electric vehicles including a heavy duty vehicle have been developed and released because of the better fuel economy and less gas products. In this study, research about an electric bus which utilizes the wheel motor drive system was conducted. The wheel motor is a motor connected to the wheel directly only with a simple gear so that the developer can utilize the space efficiently and the whole system efficiency will be better because of simple structure. However, because it is different from former types of vehicles which use the differential gear, the development of the integrated control logic is required in order to meet the vehicle stability and driving performance. The developed control logic is composed with direct yaw moment control, regenerative braking control and slip control logics. It is compared to the control logics which does not consist of direct yaw moment control and slip control when the vehicle is exposed in tough situations. For the unification of the control logic, a few maps were developed and applied to determine the output torque of each motor according to the driving status. As a result, it is shown that the developed control logic is more safe and well follow the target speed than the other control logic applied simulations.

기술현황분석 - 초대형 풍력발전기용 Yaw System의 기술동향

  • 이용범
    • 기계와재료
    • /
    • 제23권3호
    • /
    • pp.182-189
    • /
    • 2011
  • 전 세계적으로 대체에너지 개발이 활발해지면서 국내에서도 풍력발전에 대한 관심이 높아지고 있다. 풍력발전을 신재생에너지 중에서 가장 상업화에 앞서 있으며 급속한 시장 확대와 산업의 발전을 가져온 분야이다. 1990년대에 개발되어 설치 운용되고 있는 약 20만대의 0.5 MW ~ 3 MW급 중대형 풍력발전기가 세계 여러 곳에서 상업발전을 하고 있으며, 국내에서는 제주도 행원풍력발전단지에 1998년부터 2003년 4월까지 총 15기(약 203억 원 투입)의 풍력 발전기가 도입되어 세워져 있으며, 1998년 8월에 600kW 풍력발전기 1 2호기의 상업운전을 최초로 시작하였다. 최근 풍력발전기의 설치 환경이 육상에서 해상으로 변하면서 5MW급 초대형 풍력발전기의 상용화가 시도되고 있으며 수요 또한 급증하고 있다. 본고에서는 전량 수입에 의존하고 있는 풍력발전기의 핵심 부품인 Yaw system(yaw bearing & drive)의 국내외 시장 동향과 초대형 요 베어링 및 고 강성 유성기어 감속기의 특성을 분석하였으며, 특히 전략적 국산화 개발필요성을 강조하였다.

  • PDF