• 제목/요약/키워드: YSZ(Yttria-stabilized zirconia)

검색결과 152건 처리시간 0.026초

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

기판 효과에 따른 저 자장 영역에서의 자기저항 효과에 관한 연구 (The Low-field Tunnel-type Magnetoresistance Characteristics of Thin Films Deposited on Different Substrate)

  • 이희민;심인보;김철성
    • 한국자기학회지
    • /
    • 제12권2호
    • /
    • pp.41-45
    • /
    • 2002
  • 졸-겔법으로 제조된 La/sub 0.7/Pb/sub 0.3/MnO₃(LPM)박막의 기판 효과에 따른 저 자장 영역에서의 터널형 자기저항 효과에 대하여 연구하였다. 다결정 LPMO 박막은 SiO₂/Si(100) 기판과 그 위에 확산 방지막(diffusion barrier)으로 안정화 지르코니아(yttria-stabilized zirconia, YSZ) 중간층을 도입한 기판에 증착하였으며, 반면에 c-축 방향 성장을 갖는 박막의 경우 LaA1O₃(001) (LAO) 단결정 기판을 사용하였다. LPMO/LAO 박막에서의 rocking curve 측정 결과 full width half maximum (FWHM) 값은 0.32°값을 가짐을 알 수 있었다. 상온(300 K)에서 측정한 자기저항비(MR ratio) 값은 500 Oe리 외부자장을 인가시 LPMO/SiO₂/Si 박막의 경우 0.52%, LPMO/YSZ/SiO₂/Si 박막인 경우는 0.68% 그리고, LPMO/LAO의 경우에는 0.4%에도 미치지 못하는 값을 가졌다. 이때 MR최대값을 나타내는 peaks는 자기이력 곡선의 보자력 부근에서 나타남으로 그 두 결과가 잘 일치함을 보여 주고 있다. 이러한 저 자장 영역에서의 자기저항 값의 타이는 박막 시료의 기판 효과에 의한 grain boundary특성의 차이로부터 기인된다.

초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰 (Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape)

  • 김호섭;;고락길;정준기;하홍수;송규정;박찬
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

천이금속산화물이 첨가된 YSZ 복합체의 제조 및 그 특성 (Fabrication and Its Characteristics of YSZ Composite with Added Transition Metal Oxides)

  • 최성운;박재성
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.341-349
    • /
    • 2002
  • 금속산화물 Al₂O₃, CoO, Fe₂O₃ 및 MnO₂를 이트리아 안정화 지르코니아(YSZ)에 첨가하여 전기적, 기계적 그리고 소결성에 미치는 영향을 연구하였다. 정방정에서 단사정으로의 상전이비가 각 첨가물을 8wt% 까지 첨가함에 따라 변화됨을 볼 수 있었고, 소결 밀도는 첨가물량이 증가함에 따라 감소하였다. 파괴인성은 상전이비가 약 18%에서 최대가 되었다. YSZ의 전기전도도는 CoO, Fe₂O₃, 및 MnO₂의 첨가량이 1.5wt%까지 첨가될 때 증가하였다. 그러나 Al₂O₃의 첨가는 YSZ의 전기전도도에 영향이 없었다. 복합첨가의 경우 파괴인성 및 경도에 다소 복잡한 경향을 보였는데, 복합조성 1.5wt%-Fe₂O₃, 3.0wt%-Al₂O₃, 그리고 1.5wt%-CoO 에서 상전이비가 18%, 파괴인성 10.8 MPa·m/sup 1/2/이라는 최고의 값과 경도 1201 kgf/mm² 값을 얻을 수 가 있었다.

EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성 (Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD)

  • 신태호;유지행;이시우;한인섭;우상국;현상훈
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.117-122
    • /
    • 2005
  • 나노 코팅 기술로써 빠른 증착 속도와 미세구조 제어가 용이하여 항공기 엔진 부품 열차폐 코팅으로 널리 이용되는 Electron Beam Physical Vapor Deposition (EB-PVD)세라믹 코팅 기술을 연료전지 전해질 제조에 적용하였다. EB-PVD 법을 이용하여 NiO-YSZ 기판에 YSZ 전해질을 약 10$\mu$m의 두께로 짧은 시간에 코팅하였으며 증착온도에 따라 나노 구조의 표면을 가진 YSZ 막을 얻을 수 있었다. 연료전지 전해질로서의 특성을 평가하기 위하여, 같은 조건의 코팅으로 $Al_{2}O_3$기판에 전해질을 동일한 조건으로 코팅하여 전해질의 전기적 특성을 평가하였다. 또한 양극물질로서 $LaSrCoO_3$ 분말을 일반적인 스크린 프린팅 기법으로 코팅하여 EB-PVD의 코팅을 이용한 고체산화물 연료전지 제조 가능성에 대하여 논의하였다

Chemical-looping combustion을 위한 cobalt oxide계 산소운반체의 산화 환원특성 (Redox Characteristics of Cobalt Oxide based Oxygen Carriers for Chemical-Looping Combustion)

  • 이진배;박주식;최상일;송영욱;양현수;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.46-53
    • /
    • 2004
  • Redox characteristics of cobalt oxide-based oxygen carriers were tested for chemical-looping combustion. Cobalt oxide was chosen as active metal oxide and $CoAl_2O_4$ was compared with YSZ(yttria-stabilized zirconia) as a binder. Cobalt oxide/$CoAl_2O_4$ was prepared by sol-gel method. Hydrogen fuel was reacted with metal oxide and then the reduced metal was successively oxidized by air. The effects of reaction temperature were measured and the regenerabilies during 10 cycles were examined by a TGA. In regenerability of cobalt oxide/YSZ and cobalt oxide/$CoAl_2O_4$, after they showed above 90% conversion in first reduction, they were stabilized in about 70-75% conversion. From reaction rate constant obtained, the activation energies of cobalt oxide/YSZ in oxidation and reduction were 51.47kJ/mol and 7.71kJ/mol respectively.

Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용 (The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer)

  • 김혜원;김동주;박석주;임탁형;이승복;신동렬;윤순길;송락현
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성 (Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition)

  • 유현삼;임태섭;류정호;박동수;홍성현
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

고체산화물 연료전지의 공기극으로서 La1-xSrxMnO3 계의 합성 및 특성 (Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell)

  • 이유기;이영기
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.470-475
    • /
    • 2012
  • $La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.