해상의 선박탐지는 다양한 방법으로 수행될 수 있는데, 위성은 광역적인 감시가 가능하고, 특히 합성개구레이더(Synthetic Aperture Radar, SAR) 영상은 주야간 및 전천후로 활용될 수 있다. 본 연구에서는 SAR 영상으로부터 효율적인 선박 탐지 방법을 제시하기 위하여, Sentinel-1 영상에 You Only Look Once Version 5 (YOLOv5) 모델을 적용하여 선박 탐지를 수행하고, 편파별 개별 모델과 통합 모델의 차이 및 편파별 정확도 특성을 분석하였다. 파라미터가 작고 가벼운 YOLOv5s와 파라미터가 많지만 정확도가 높은 YOLOv5x 두가지 모델에 대하여 각각 (1) HH, HV, VH, VV 각 편파별로 나누어 학습/검증 및 평가 그리고 (2) 모든 편파의 영상을 사용하여 학습/검증 및 평가를 실시한 결과, 네 가지 실험에서 모두 0.977 ≤ AP@0.5 ≤ 0.998의 비슷하면서 매우 높은 정확도를 나타냈다. 이러한 결과를 현업시스템의 관점에서 보면, 가벼운 YOLO 모델(YOLOv5s, YOLOv8s 등)로 4개 편파 통합 모델을 구축하는 것이 실시간 선박탐지에 효과적임을 시사하는 것이다. 이 실험에서 사용한 영상은 19,582장이었지만, Sentinel-1 이외에도 Capella, ICEYE 등 다른 SAR 영상을 추가적으로 활용한다면, 보다 더 유연하고 정확한 선박 탐지 모델이 구축될 수 있을 것이다.
Benthic marine invertebrates, the invertebrates living on the bottom of the ocean, are an essential component of the marine ecosystem, but excessive reproduction of invertebrate grazers or pirate creatures can cause damage to the coastal fishery ecosystem. In this study, we compared and evaluated You Only Look Once Version 7 (YOLOv7), the most widely used deep learning model for real-time object detection, and detection tansformer (DETR), a transformer-based model, using underwater images for benthic marine invertebratesin the coasts of South Korea. YOLOv7 showed a mean average precision at 0.5 (mAP@0.5) of 0.899, and DETR showed an mAP@0.5 of 0.862, which implies that YOLOv7 is more appropriate for object detection of various sizes. This is because YOLOv7 generates the bounding boxes at multiple scales that can help detect small objects. Both models had a processing speed of more than 30 frames persecond (FPS),so it is expected that real-time object detection from the images provided by divers and underwater drones will be possible. The proposed method can be used to prevent and restore damage to coastal fisheries ecosystems, such as rescuing invertebrate grazers and creating sea forests to prevent ocean desertification.
Amal Al-Shahrani;Amjad Alghamdi;Areej Alqurashi;Raghad Alzahrani;Nuha imam
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.1-10
/
2024
Individuals with visual impairments face numerous challenges in their daily lives, with navigating streets and public spaces being particularly daunting. The inability to identify safe crossing locations and assess the feasibility of crossing significantly restricts their mobility and independence. Globally, an estimated 285 million people suffer from visual impairment, with 39 million categorized as blind and 246 million as visually impaired, according to the World Health Organization. In Saudi Arabia alone, there are approximately 159 thousand blind individuals, as per unofficial statistics. The profound impact of visual impairments on daily activities underscores the urgent need for solutions to improve mobility and enhance safety. This study aims to address this pressing issue by leveraging computer vision and deep learning techniques to enhance object detection capabilities. Two models were trained to detect objects: one focused on street crossing obstacles, and the other aimed to search for objects. The first model was trained on a dataset comprising 5283 images of road obstacles and traffic signals, annotated to create a labeled dataset. Subsequently, it was trained using the YOLOv8 and YOLOv5 models, with YOLOv5 achieving a satisfactory accuracy of 84%. The second model was trained on the COCO dataset using YOLOv5, yielding an impressive accuracy of 94%. By improving object detection capabilities through advanced technology, this research seeks to empower individuals with visual impairments, enhancing their mobility, independence, and overall quality of life.
Jin Ho Lee;In Su Kim;Hector Acosta;Hyeong Bok Kim;Seung Won Lee;Soon Ki Jung
Journal of information and communication convergence engineering
/
제21권4호
/
pp.329-336
/
2023
This paper introduces an edge AI-based scene-specific object detection system for long-term traffic management, focusing on analyzing congestion and movement via cameras. It aims to balance fast processing and accuracy in traffic flow data analysis using edge computing. We adapt the YOLOv5 model, with four heads, to a scene-specific model that utilizes the fixed camera's scene-specific properties. This model selectively detects objects based on scale by blocking nodes, ensuring only objects of certain sizes are identified. A decision module then selects the most suitable object detector for each scene, enhancing inference speed without significant accuracy loss, as demonstrated in our experiments.
도시의 인구 집중과 무분별한 개발은 대기오염, 열섬현상과 같은 다양한 환경 문제들을 유발하며, 자연재해로 인한 피해 상황을 악화시키는 등 인재의 원인이 되고 있다. 도심 수목은 이러한 도시 문제들의 해결방안으로 제시되어왔으며, 실제로 환경 개선 기능을 제공하는 등 중요한 역할들을 수행한다. 이에 따라 수목이 도시 환경에 미치는 영향을 파악하기 위해 도심 수목에서 개별목에 대한 정량적인 측정 및 분석이 요구된다. 그러나 도심 수목의 복잡성 및 다양성은 단일 수목 탐지 정확도를 낮추는 문제점이 존재한다. 따라서 본 연구는 수목 개체에 대해 효과적인 탐지가 가능한 고해상도 항공영상 및 object detection에서 뛰어난 성능을 발휘한 You Only Look Once Version 5 (YOLOv5) 모델을 사용하여 도심 수목을 효과적으로 탐지하는 연구를 진행하였다. 수목 AI 학습 데이터셋의 구축을 위한 라벨링 가이드라인을 생성하고 이를 기준으로 동작구 수목에 대해 box annotation을 수행하였다. 구축된 데이터셋으로부터 다양한 scale의 YOLOv5 모델들을 테스트하고 최적의 모델을 채택하여 효율적인 도심 수목 탐지를 수행한 결과, mean Average Precision (mAP) 0.663의 유의미한 결과를 도출하였다.
Na Young Lee;Geon Lee;Min Seop Lee;Yun Jung Hong;In-Beom Yang;Jiyoung Woo
한국컴퓨터정보학회논문지
/
제29권1호
/
pp.51-59
/
2024
교내 보행자 교통사고를 예방하고 안전한 환경을 조성하기 위해 교내 위험 구간을 설정하고, 해당 구역에서 차량 속도 측정 및 교차로 횡단보도에서의 차량과 보행자 상호작용을 실시간으로 감지하는 시스템을 설계하였다. YOLOv5s 모델과 Deep SORT 방법을 이용하여 구간 속도 측정 및 객체 추적을 수행하고, 횡단보도 구역에서는 YOLOv5s 객체 탐지 모델을 활용하여 보행자와 차량을 구분하는 조건별 출력 시스템을 개발하여 실시간으로 구동이 됨을 검증하였다. 이 시스템은 저렴한 비용으로 일반 스마트폰 카메라나 화상용 카메라를 활용하여 설치할 수 있으며, 대학 캠퍼스뿐만 아니라 비슷한 문제 지역에 도입하여 차량과 보행자의 안전을 위한 해결 방안으로 기대된다.
Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.
본 연구는 AI 기법 중에 최근 널리 사용되고 있는 딥러닝 모델들을 비교하여 재난으로 인해 손상된 건물의 신속한 감지에 가장 적합한 모델을 선정하는 데 목적이 있다. 먼저, 신속한 객체감지에 적합한 1단계 기반 검출기 중 주요 딥러닝 모델인 SSD-512, RetinaNet, YOLOv3를 후보 모델로 선정하였다. 이 방법들은 1단계 기반 검출기 방식을 적용한 모델로서 객체 인식 분야에 널리 이용되고 있다. 이 모델들은 객체 인식 처리방식의 구조와 빠른 연산의 장점으로 인해 객체 인식 분야에 널리 사용되고 있으나 재난관리에서의 적용은 초기 단계에 머물러 있다. 본 연구에서는 피해감지에 가장 적합한 모델을 찾기 위해 다음과 같은 과정을 거쳤다. 먼저, 재난에 의한 건물의 피해 정도 감지를 위해 재난에 의해 손상된 건물로 구성된 xBD 데이터셋을 활용하여 초고해상도 위성영상을 훈련시켰다. 다음으로 모델 간의 성능을 비교·평가하기 위하여 모델의 감지 정확도와 이미지 처리속도를 정량적으로 분석하였다. 학습 결과, YOLOv3는 34.39%의 감지 정확도와 초당 46개의 이미지 처리속도를 기록하였다. RetinaNet은 YOLOv3보다 1.67% 높은 36.06%의 감지 정확도를 기록하였으나, 이미지 처리속도는 YOLOv3의 3분의 1에 그쳤다. SSD-512는 두 지표에서 모두 YOLOv3보다 낮은 수치를 보였다. 대규모 재난에 의해 발생한 피해 정보에 대한 신속하고 정밀한 수집은 재난 대응에 필수적이다. 따라서 본 연구를 통해 얻은 결과는 신속한 지리정보 취득이 요구되는 재난관리에 효과적으로 활용될 수 있을 것이라 기대한다.
Kim, MinJu;Choi, YoHan;Lee, Jeong-nam;Sa, SooJin;Cho, Hyun-chong
Journal of Animal Science and Technology
/
제63권6호
/
pp.1453-1463
/
2021
Feeding is the most important behavior that represents the health and welfare of weanling pigs. The early detection of feed refusal is crucial for the control of disease in the initial stages and the detection of empty feeders for adding feed in a timely manner. This paper proposes a real-time technique for the detection and recognition of small pigs using a deep-leaning-based method. The proposed model focuses on detecting pigs on a feeder in a feeding position. Conventional methods detect pigs and then classify them into different behavior gestures. In contrast, in the proposed method, these two tasks are combined into a single process to detect only feeding behavior to increase the speed of detection. Considering the significant differences between pig behaviors at different sizes, adaptive adjustments are introduced into a you-only-look-once (YOLO) model, including an angle optimization strategy between the head and body for detecting a head in a feeder. According to experimental results, this method can detect the feeding behavior of pigs and screen non-feeding positions with 95.66%, 94.22%, and 96.56% average precision (AP) at an intersection over union (IoU) threshold of 0.5 for YOLOv3, YOLOv4, and an additional layer and with the proposed activation function, respectively. Drinking behavior was detected with 86.86%, 89.16%, and 86.41% AP at a 0.5 IoU threshold for YOLOv3, YOLOv4, and the proposed activation function, respectively. In terms of detection and classification, the results of our study demonstrate that the proposed method yields higher precision and recall compared to conventional methods.
Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.