• 제목/요약/키워드: YOLOv5 model

검색결과 98건 처리시간 0.019초

YOLOv5를 이용한 객체 이중 탐지 방법 (Object Double Detection Method using YOLOv5)

  • 도건우;김민영;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2022
  • 대한민국은 산불의 위험으로부터 취약한 환경을 가지고 있으며, 이로 인해 매년 큰 피해가 발생하고 있다. 이를 예방하기 위해 많은 인력을 활용하고 있으나 효과가 미흡한 실정이다. 만약 인공지능 기술을 통해 산불을 조기 발견해 진화된다면 재산 및 인명피해를 막을 수 있다. 본 논문에서는 산불의 피해를 최소화하기 위한 오브젝트 디텍션 모델을 제작하는 과정에서 발생하는 데이터 수집과 가공 과정을 최소화하는 목표로 한 객체 이중 탐지 방법을 연구했다. YOLOv5에서 한정된 이미지를 학습한 단일 모델을 통해 일차적으로 원본 이미지를 탐지하고, 원본 이미지에서 탐지된 객체를 Crop을 통해 잘라낸다. 이렇게 잘린 이미지를 재탐지하는 객체 이중 탐지 방법을 통해 오 탐지 객체 탐지율의 개선 가능성을 확인했다.

  • PDF

YOLO 기반 실종자 수색 AI 응용 시스템 구현 (Implementation of YOLO based Missing Person Search Al Application System)

  • 김하연;김종훈;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.159-170
    • /
    • 2023
  • 실종자 수색은 많은 시간과 인력이 필요하다. 그 해결책의 일환으로 YOLO 기반 모델을 활용하여 실종자 수색 AI 시스템을 구현하였다. 객 객체 탐지 모델을 훈련하기 위해 AI-Hub에서 드론 이동체 인지 영상(도로 고정)을 수집하고 모델을 학습하였다. 또한, 훈련 데이터 세트와 상이한 환경에서의 성능을 평가하기 위해 산악 환경 데이터 세트를 추가 수집하였다. 실종자 수색 AI 시스템의 최적화를 위해 모델 크기 및 하이퍼파라미터에 따른 성능평가, 과대적합 우려에 대한 추가 성능평가를 시행하였다. 성능평가 결과 YOLOv5-L 모델이 우수한 성능을 보이는 것을 확인할 수 있었으며 데이터 증강 기법을 적용함에 따라 모델의 성능이 보다 향상되었다. 이후 웹 서비스에는 데이터 증강 기법을 적용한 YOLOv5-L 모델을 적용하여 실종자 수색의 효율성을 높였다.

고해상도 원격탐사 영상을 이용한 YOLOv5기반 굴뚝 탐지 (YOLOv5-based Chimney Detection Using High Resolution Remote Sensing Images)

  • 윤영웅;정형섭;이원진
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1677-1689
    • /
    • 2022
  • 대기오염은 동식물의 건강에 장·단기적으로 해로운 영향을 미치는 사회적 문제이다. 굴뚝은 대기를 오염시키는 대기오염물질의 주배출원으로 그 위치와 종류를 탐지하고 모니터링할 필요가 있다. 대기오염물질을 배출하는 굴뚝이 위치한 발전소 및 산업단지는 접근성이 많이 떨어지고 부지가 넓어 직접 모니터링하기에는 비용적, 시간적으로 비효율적이다. 따라서 최근에는 원격탐사 자료를 이용하여 굴뚝을 탐지하는 연구가 수행되고 있다. 본 연구에서는 중국 베이징, 톈진 허베이 성에 위치한 발전소를 대상으로 구축된 BUAA-FFPP60 오픈 데이터 세트를 활용하여 YOLOv5기반의 굴뚝 탐지 모델을 제작하였다. 탐지 모델의 성능을 향상시키기 위하여 데이터 분할과 데이터 증강기법을 적용하였으며, 최적의 모델 제작을 위한 학습 전략을 세웠다. 학습이 완료된 모델은 precision, recall과 같은 각종 지표를 통해 성능을 확인하였으며, 최종적으로 동일한 데이터 세트를 사용한 기존 연구와의 비교를 통해 모델의 성능을 평가하였다.

A study on object distance measurement using OpenCV-based YOLOv5

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제9권3호
    • /
    • pp.298-304
    • /
    • 2021
  • Currently, to prevent the spread of COVID-19 virus infection, gathering of more than 5 people in the same space is prohibited. The purpose of this paper is to measure the distance between objects using the Yolov5 model for processing real-time images with OpenCV in order to restrict the distance between several people in the same space. Also, Utilize Euclidean distance calculation method in DeepSORT and OpenCV to minimize occlusion. In this paper, to detect the distance between people, using the open-source COCO dataset is used for learning. The technique used here is using the YoloV5 model to measure the distance, utilizing DeepSORT and Euclidean techniques to minimize occlusion, and the method of expressing through visualization with OpenCV to measure the distance between objects is used. Because of this paper, the proposed distance measurement method showed good results for an image with perspective taken from a higher position than the object in order to calculate the distance between objects by calculating the y-axis of the image.

A study on Detecting the Safety helmet wearing using YOLOv5-S model and transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.302-309
    • /
    • 2022
  • Occupational safety accidents are caused by various factors, and it is difficult to predict when and why they occur, and it is directly related to the lives of workers, so the interest in safety accidents is increasing every year. Therefore, in order to reduce safety accidents at industrial fields, workers are required to wear personal protective equipment. In this paper, we proposes a method to automatically check whether workers are wearing safety helmets among the protective equipment in the industrial field. It detects whether or not the helmet is worn using YOLOv5, a computer vision-based deep learning object detection algorithm. We transfer learning the s model among Yolov5 models with different learning rates and epochs, evaluate the performance, and select the optimal model. The selected model showed a performance of 0.959 mAP.

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.

SHOMY: Detection of Small Hazardous Objects using the You Only Look Once Algorithm

  • Kim, Eunchan;Lee, Jinyoung;Jo, Hyunjik;Na, Kwangtek;Moon, Eunsook;Gweon, Gahgene;Yoo, Byungjoon;Kyung, Yeunwoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2688-2703
    • /
    • 2022
  • Research on the advanced detection of harmful objects in airport cargo for passenger safety against terrorism has increased recently. However, because associated studies are primarily focused on the detection of relatively large objects, research on the detection of small objects is lacking, and the detection performance for small objects has remained considerably low. Here, we verified the limitations of existing research on object detection and developed a new model called the Small Hazardous Object detection enhanced and reconstructed Model based on the You Only Look Once version 5 (YOLOv5) algorithm to overcome these limitations. We also examined the performance of the proposed model through different experiments based on YOLOv5, a recently launched object detection model. The detection performance of our model was found to be enhanced by 0.3 in terms of the mean average precision (mAP) index and 1.1 in terms of mAP (.5:.95) with respect to the YOLOv5 model. The proposed model is especially useful for the detection of small objects of different types in overlapping environments where objects of different sizes are densely packed. The contributions of the study are reconstructed layers for the Small Hazardous Object detection enhanced and reconstructed Model based on YOLOv5 and the non-requirement of data preprocessing for immediate industrial application without any performance degradation.

YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교 (YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model)

  • 박찬용;임영민;정승대;조영혁;이병철;이규현;김진욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.115-124
    • /
    • 2022
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 일반적으로 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 실험결과 YOLOv3는 문자열 탐지에 비교적 약점을 보이지만 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하였다. 따라서, 이들 YOLO 신경망 기반 문자열 탐지방법이 향후 문자 인식 분야에서 많이 활용될 것으로 전망한다.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구 (A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning)

  • 박수호;김흥민;이희원;한정익;김탁영;임재영;장선웅
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.237-250
    • /
    • 2022
  • 본 연구에서는 딥러닝 기반 다중 객체 추적 모델을 활용하여 수중드론으로 촬영된 영상으로부터 특정 해역의 조식동물 현존량을 추정하는 방법을 제안한다. 수중드론 영상 내에 포함된 조식동물을 클래스 별로 탐지하기 위해 YOLOv5 (You Only Look Once version 5)를 활용하였으며, 개체수 집계를 위해 DeepSORT (Deep Simple Online and real-time tracking)를 활용하였다. GPU 가속기를 활용할 수 있는 워크스테이션 환경에서 두 모델의 성능 평가를 수행하였으며, YOLOv5 모델은 평균 0.9 이상의 모델의 정확도(mean Average Precision, mAP)를 보였으며, YOLOv5s 모델과 DeepSORT 알고리즘을 활용하였을 때, 4 k 해상도 기준 약 59 fps의 속도를 보이는 것을 확인하였다. 실해역 적용 결과 약 28%의 과대 추정하는 경향이 있었으나 객체 탐지 모델만 활용하여 현존량을 추정하는 것과 비교했을 때 오차 수준이 낮은 것을 확인하였다. 초점을 상실한 프레임이 연속해서 발생할 때와 수중드론의 조사 방향이 급격히 전환되는 환경에서의 정확도 향상을 위한 후속 연구가 필요하지만 해당 문제에 대한 개선이 이루어진다면, 추후 조식동물 구제 사업 및 모니터링 분야의 의사결정 지원자료 생산에 활용될 수 있을 것으로 판단된다.