• Title/Summary/Keyword: YOLOv10

Search Result 268, Processing Time 0.026 seconds

Moving Pigs Detection in Video Monitoring Applications (비디오 모니터링 응용에서 움직인 돼지 탐지)

  • Yu, SeungHyun;Suh, Yooil;Son, JunHyung;Lee, SeJun;Chung, Yongwha;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.379-381
    • /
    • 2021
  • 비디오 모니터링은 자율주행차뿐만 아니라 농장 내 병든 동물 탐지 등과 같은 스마트팜 분야에서도 사람을 대신하여 24시간 연속 모니터링할 수 있는 중요한 응용 분야이다. 본 논문에서는 비디오 모니터링의 계산양을 줄이면서도 혼잡한 돈방에서 빠르게 움직이는 돼지들을 정확히 탐지하기 위해 CNN 기반 객체 탐지기의 정확도를 고려한 방법을 제안한다. 즉, 연속되는 비디오 영상에서 key frame을 먼저 추출한 후, 비디오의 특성인 움직임 정보가 포함된 영상에서 GMM을 이용하여 움직인 돼지와 움직이지 않은 돼지의 위치를 구분하고, 최종적으로 YOLOv4를 적용하여 움직인 돼지와 움직이지 않은 돼지를 탐지한다. 돈사에서 촬영된 비디오 데이터로 실험한 결과, 제안 방법은 효과적으로 움직인 돼지를 탐지할 수 있음을 확인하였다.

A Study on Deep Learning Based RobotArm System (딥러닝 기반의 로봇팔 시스템 연구)

  • Shin, Jun-Ho;Shim, Gyu-Seok
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.901-904
    • /
    • 2020
  • 본 시스템은 세 단계의 모델을 복합적으로 구성하여 이루어진다. 첫 단계로 사람의 음성언어를 텍스트로 전환한 후 사용자의 발화 의도를 분류해내는 BoW방식을 이용해 인간의 명령을 이해할 수 있는 자연어 처리 알고리즘을 구성한다. 이후 YOLOv3-tiny를 이용한 실시간 영상처리모델과 OctoMapping모델을 활용하여 주변환경에 대한 3차원 지도생성 후 지도데이터를 기반으로하여 동작하는 기구제어 알고리즘 등을 ROS actionlib을 이용한 관리자시스템을 구성하여 ROS와 딥러닝을 활용한 편리한 인간-로봇 상호작용 시스템을 제안한다.

Image-based Unauthorised person detection system using BLE beacons (BLE 비콘을 활용한 영상 기반 비승인자 감지 시스템)

  • Kim, Hyungju;Park, Chan;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.470-473
    • /
    • 2021
  • 외부인들이 시설을 무단으로 이용하는 등의 범죄가 계속해서 발생하고 있다. 본 논문은 기존의 시설물에서 사용하고 있는 단순 인증 절차가 아닌 BLE 비콘과 영상데이터를 활용한 비승인자 감지 시스템이다. 이 시스템은 스마트폰 어플리케이션에서 BLE 비콘의 데이터를 받은 후 UUID 값과 RSSI 값을 서버로 전송한다. 이후 전송된 데이터들로 핑거프린팅 기반 RadioMap을 구성하고 RNN 기반 딥러닝 학습을 진행하여 사용자 위치 데이터를 도출한다. CCTV를 통해 수집된 영상데이터는 서버로 전송되며, YOLOv4를 이용하여 객체탐지를 위한 프로세스를 진행한 후 Person 클래스를 추출한다. 이후 승인된 사용자의 위치 데이터에 실시간 영상데이터를 더하여 인증 과정 절차가 진행되지 않은 비승인자들을 추적한다. 본 논문은 COVID-19로 인해 시설물 인증 절차에 사용이 증가하고 있는 QR코드를 이용해 인증 과정 절차의 진행 방식으로 시스템에 대한 확장성까지 기대할 수 있다.

Abnormal behavior prediction system based on companion animal behavior analysis (반려동물 행동 분석 기반 이상행동 예측 시스템)

  • Shin, Minchan;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.487-490
    • /
    • 2021
  • 최근 반려동물 관련 산업이 증가함에 따라 반려동물의 행동을 분석하는 연구가 진행되고 있다. 이를 바탕으로 본 논문에서는 반려동물 행동 분석을 통한 이상행동 예측 시스템을 제안한다. 이 시스템은 CCTV로부터 반려동물의 영상 데이터를 수집하고, YOLOv4(You Only Look Once version 4)를 통해 반려동물의 객체를 탐지한다. 행동을 분석하기 위해 탐지된 반려동물 객체를 DeepLabCut 딥러닝 알고리즘을 사용하여 관절 좌표 정보를 추출한다. 추출된 관절 좌표와 반려동물의 일반적인 행동을 매칭하여 이상행동을 예측하기 위한 DNN(Deep Neural Networks)의 입력 데이터로써 사용된다. 위 과정을 통해 반려동물의 전체적인 행동을 분석하여 이상행동을 예측한다. 이 시스템을 통해 반려동물의 행동을 분석하고 이상행동을 예측함으로써 반려동물 의료 관련 사업에도 적용될 수 있을 것이다.

Through deep learning-based video processing, Design and implementation of Smart Port Parking Information System (딥 러닝 기반 영상처리를 통한 스마트 항만 주차정보시스템 설계 및 구현)

  • Koo, Changhun;Jung, Yoonjoo;Lee, Donggeon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1342-1345
    • /
    • 2021
  • 최근 울산항에는 화물차가 정해진 화물차 주차장이 아닌 항만 내외에 불법주차를 하는 사례가 빈번하게 발생하고 있다. 본 논문은 이러한 문제를 해결하고자 화물차 주차장 이용을 활성화하는 방안을 연구하였다. 이에 따라 화물차 주차장의 주차 현황을 실시간으로 제공하는 딥 러닝(YOLOv4) 기반 영상분석방식의 스마트 항만 주차정보시스템을 제안한다. 더불어, 제시한 방안을 통해 주차장 이용이 활성화 되었을 때의 사회적 가치를 산정하여 기존과 비교하였다.

Convenience Store Product Recognition Application for the Blind (시각장애인을 위한 편의점 제품 인식 애플리케이션)

  • Han, Sang Hyeok;Park, Da Soo;Lim, Chae Min;Jeong, Ji Woon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1298-1301
    • /
    • 2021
  • 본 논문은 딥러닝 학습을 통한 객체(편의점제품) 인식 시스템을 소개한다. 편의점 내에서 시각장애인의 접근성인 매우 떨어지고 있다. 그나마 점자가 있는 제품은 음료수 제품이지만 제품 이름이 아닌 범주로 표현하고 있어 원하는 제품 구매를 어렵게 한다. 본 논문에서는 YOLOv5를 통한 딥러닝 학습을 사용하여 정확한 제품을 시각장애인에게 제공할 수 있는 애플리케이션을 개발했다. 사용한 학습데이터 세트는 제품을 직접 찍어 확보했으며, 국내 11개 제품을 포함한다. 학습데이터 세트는 총 23,814장을 사용했으며, 결과 정확도를 나타내는 mAP_0.5:0.95 는 약 0.9790의 성능을 보였다.

A Study on The Fault Detection System in Gas Lighter Manufacturing Process (라이터 제조공정의 불량 검출 시스템)

  • Choi, Sung-June;Park, Sang-Hyun;Lee, Kang-Hee;Shin, Youn-Soon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.132-135
    • /
    • 2021
  • 국내에서 유통되는 일회용 가스라이터 점유율의 약 절반은 국내 유일의 한 공장에서 생산하고 있다. 저렴한 외국산 가스라이터로부터 국내 사업을 보호하기 위해 품질 향상과 원가경쟁력 확보의 중요성이 매우 커진 것이 현실이다. 본 논문에서는 YOLOv4 머신러닝 객체인식 모델과 OpenCV 실시간 이미지 처리 오픈소스를 활용해 개발한 불량품 자동 검출 시스템을 제안한다. 대표적인 불량인 '액화가스 부피 불량품'을 검출하는 시스템을 개발하고 실험을 통해 그 정확성을 검증하였다. 제안한 시스템은 97%의 정확도로 상태를 분류하였으며, 이를 통해 100%의 불량을 검출할 수 있었다.

Smart traffic signal solution for the visually impaired(smart traffic light and receiver) (시각장애인을 위한 스마트 교통신호 솔루션(스마트 신호등과 수신기))

  • Hong, Inhee;Lee, Sumin;Jang, Soonho;Yoon, Jongho
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1302-1304
    • /
    • 2021
  • 본 프로젝트는 시각장애인의 도심이동 지원 및 횡단보도에서의 안전한 보행을 위해 고안되었다. 시각장애인용 글래스를 제작하여 Custom train 한 YOLOv5 와 Lidar 센서를 통해 횡단보도 내에 객체를 감지하면 위험 음성을 송출하고 안전하게 길을 건널 수 있도록 청각적으로 지도하였다. 또한 보호자용 앱을 구현하여 보호자의 불안감을 해소하고 안정감을 주고자 하였다.

A Study on Deep learning-based crop surface inspection automation system (딥러닝 기반 농작물 표면 검사 자동화 시스템 연구)

  • Kim, W.J.;Kim, S.B.;Kim, M.J.;Kim, M.J.;Kim, S.H.
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.758-760
    • /
    • 2022
  • 본 연구는 머신러닝의 한 종류인 YOLOv5를 이용하여 기존 육안 선별작업을 자동화 하는 기계를 설계하는 것이다. 본 연구에서는 영상촬영과 선별작업을 진행하는 컨베이어 기구와 선별 프로그램을 제작하고, 모든 표면을 검사해 사과의 품질을 3단계로 구별하는 작업을 진행하였다. 결과적으로 투입된 사과의 품질을 성공적으로 분류 하였다.

Augmented Reality-Based First Person View RC Car Racing Game (증강현실 기반의 FPV(First Person View) RC 카 레이싱 게임)

  • Park, Seong-Eun;Kim, Jin-Hyun;Kim, Hak-Kyum
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.800-802
    • /
    • 2022
  • 최근 성인들을 위한 '키덜트 장난감'의 관심도가 증가하고 있다. 그중 높은 매출을 보이는 RC 카와 VR 의 콘텐츠 부족 및 대중화 문제를 해결하면 시장규모를 성장시킬 수 있다고 판단한다. 본 논문은 차별화된 RC 카 레이싱 게임 개발을 목표로 한다. 스마트폰용 VR 기기를 착용해 영상을 보며 컨트롤러로 RC 카를 조종한다. 또한 실시간 객체 검출이 가능한 YOLOv5 를 활용해 표지판 인식 및 바운딩 박스, 표지판 라벨, 라벨 음성 출력 기능과 오픈 소스 기반 실시간 컴퓨터 비전인 OpenCV 기반 알고리즘을 활용하여 차선을 인식해 이를 기반으로 영상 처리를 거쳐 가상 차선 및 가상 트랙을 출력한다. 결론적으로 RC 카와 VR 로 구현하여 이를 통해 부족한 VR 컨텐츠를 추가하고 접근성을 강화한다.