• Title/Summary/Keyword: YOLOv10

Search Result 268, Processing Time 0.029 seconds

Virtual Reality Contents for Rehabilitation Training Utilizing Skeletal Data and Foot Pressure Mat (골격 데이터와 발 압력매트를 활용한 재활 훈련용 가상 현실 콘텐츠)

  • Jongwook Si;Hyeri Jeong;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.330-338
    • /
    • 2024
  • With the growing interest in rehabilitation therapy and exercise programs, there is an increasing need for smart content that simultaneously addresses both health and engagement. Particularly, exercises performed in a state of physical imbalance carry a high risk of injury, making it essential to detect and integrate balance into the training process. This paper proposes Rehabilitation Training program that combines a pressure platform with virtual reality (VR) technology to address this issue. The program enables users to perform exercises such as squats, stationary walking, and forward-backward walking in a VR environment, utilizing real-time foot pressure data captured through a pressure mat. Additionally, an algorithm based on YOLOv8-pose extracted skeletal coordinates is proposed to assess body balance and automatically count squat repetitions. The experimental results showed an average accuracy of 87.9% for each posture, confirming that users can be provided with a safer, more efficient, and immersive training experience through this approach.

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

A Study on the Classification Model of Minhwa Genre Based on Deep Learning (딥러닝 기반 민화 장르 분류 모델 연구)

  • Yoon, Soorim;Lee, Young-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1524-1534
    • /
    • 2022
  • This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.

Dataset Augmentation on Fallen Person Objects in a Autonomous Driving Tractor Environment (자율주행 트랙터 환경에서 쓰러진 사람에 대한 데이터 증강)

  • Hwapyeong Baek;Hanse Ahn;Heesung Chae;Yongwha Chung
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.553-556
    • /
    • 2023
  • 데이터 증강은 데이터 불균형 문제를 해결하기 위해 일반화 성능을 향상시킨다. 이는 과적합 문제를 해결하고 정확도를 높이는 데 도움을 준다. 과적합을 해결하기 위해서 본 논문에서는 분할 마스크 라벨링을 자동화하여 효율성을 높이고, RoI를 활용한 분할 Copy-Paste 데이터 증강 기법을 제안한다. 본 논문의 제안 방법을 적용한 결과 YOLOv8 모델에서 기존의 분할, 박스 Copy-Paste 데이터 증강 기법과 비교해서 쓰러진 사람 객체에 대한 정확도가 10.2% 증가함으로써 제안한 방법이 일반화 성능을 높이는 데 효과가 있음을 확인하였다.

Deep Learning based violent protest detection system

  • Lee, Yeon-su;Kim, Hyun-chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 2019
  • In this paper, we propose a real-time drone-based violent protest detection system. Our proposed system uses drones to detect scenes of violent protest in real-time. The important problem is that the victims and violent actions have to be manually searched in videos when the evidence has been collected. Firstly, we focused to solve the limitations of existing collecting evidence devices by using drone to collect evidence live and upload in AWS(Amazon Web Service)[1]. Secondly, we built a Deep Learning based violence detection model from the videos using Yolov3 Feature Pyramid Network for human activity recognition, in order to detect three types of violent action. The built model classifies people with possession of gun, swinging pipe, and violent activity with the accuracy of 92, 91 and 80.5% respectively. This system is expected to significantly save time and human resource of the existing collecting evidence.

A Study on Fruit Quality Identification Using YOLO V2 Algorithm

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.190-195
    • /
    • 2021
  • Currently, one of the fields leading the 4th industrial revolution is the image recognition field of artificial intelligence, which is showing good results in many fields. In this paper, using is a YOLO V2 model, which is one of the image recognition models, we intend to classify and select into three types according to the characteristics of fruits. To this end, it was designed to proceed the number of iterations of learning 9000 counts based on 640 mandarin image data of 3 classes. For model evaluation, normal, rotten, and unripe mandarin oranges were used based on images. We as a result of the experiment, the accuracy of the learning model was different depending on the number of learning. Normal mandarin oranges showed the highest at 60.5% in 9000 repetition learning, and unripe mandarin oranges also showed the highest at 61.8% in 9000 repetition learning. Lastly, rotten tangerines showed the highest accuracy at 86.0% in 7000 iterations. It will be very helpful if the results of this study are used for fruit farms in rural areas where labor is scarce.

Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network (심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Design of Emergency Fire Fighting and Inspection Robot Riding on Highway Guardrail

  • Ma, Xiaotong;Li, Xiaochen;Liu, Yanqiu;Tao, Xueheng
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.833-843
    • /
    • 2022
  • Based on the problems of untimely Expressway fire rescue and backward traditional fire rescue methods, an emergency fire fighting and inspection robot riding on expressway guardrail is designed. The overall mechanical structure design of emergency fire fighting and inspection robot riding on expressway guardrail is completed by using three-dimensional design software. The target fire detection is realized by using the target detection algorithm of Yolov5; By selecting a variety of sensors and using the control method of multi algorithm fusion, the basic function of robot on duty early warning is realized, and it has the ability of intelligent fire extinguishing. The BMS battery charging and discharging system is used to detect the real-time power of the robot. The design of the expressway emergency fire fighting and inspection robot provides a new technical means for the development of emergency fire fighting equipment, and improves the reliability and efficiency of expressway emergency fire fighting.

Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects (유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상)

  • Heo, Jiseong;Park, Jihun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.

A Study on Image Preprocessing Methods for Automatic Detection of Ship Corrosion Based on Deep Learning (딥러닝 기반 선박 부식 자동 검출을 위한 이미지 전처리 방안 연구)

  • Yun, Gwang-ho;Oh, Sang-jin;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.573-586
    • /
    • 2022
  • Corrosion can cause dangerous and expensive damage and failures of ship hulls and equipment. Therefore, it is necessary to maintain the vessel by periodic corrosion inspections. During visual inspection, many corrosion locations are inaccessible for many reasons, especially safety's point of view. Including subjective decisions of inspectors is one of the issues of visual inspection. Automation of visual inspection is tried by many pieces of research. In this study, we propose image preprocessing methods by image patch segmentation and thresholding. YOLOv5 was used as an object detection model after the image preprocessing. Finally, it was evaluated that corrosion detection performance using the proposed method was improved in terms of mean average precision.