• Title/Summary/Keyword: YOLOv10

Search Result 268, Processing Time 0.026 seconds

A Research on V2I-based Accident Prevention System for the Prevention of Unexpected Accident of Autonomous Vehicle (자율주행 차량의 돌발사고 방지를 위한 V2I 기반의 사고 방지체계 연구)

  • Han, SangYong;Kim, Myeong-jun;Kang, Dongwan;Baek, Sunwoo;Shin, Hee-seok;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.86-99
    • /
    • 2021
  • This research proposes the Accident Prevention System to prevent collision accident that can occur due to blind spots such as crossway or school zone using V2I communication. Vision sensor and LiDAR sensor located in the infrastructure of crossway somewhere like that recognize objects and warn vehicles at risk of accidents to prevent accidents in advance. Using deep learning-based YOLOv4 to recognize the object entering the intersection and using the Manhattan Distance value with LiDAR sensors to calculate the expected collision time and the weight of braking distance and secure safe distance. V2I communication used ROS (Robot Operating System) communication to prevent accidents in advance by conveying various information to the vehicle, including class, distance, and speed of entry objects, in addition to collision warning.

Deep Learning-based Vehicle Anomaly Detection using Road CCTV Data (도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지)

  • Shin, Dong-Hoon;Baek, Ji-Won;Park, Roy C.;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2021
  • In the modern society, traffic problems are occurring as vehicle ownership increases. In particular, the incidence of highway traffic accidents is low, but the fatality rate is high. Therefore, a technology for detecting an abnormality in a vehicle is being studied. Among them, there is a vehicle anomaly detection technology using deep learning. This detects vehicle abnormalities such as a stopped vehicle due to an accident or engine failure. However, if an abnormality occurs on the road, it is possible to quickly respond to the driver's location. In this study, we propose a deep learning-based vehicle anomaly detection using road CCTV data. The proposed method preprocesses the road CCTV data. The pre-processing uses the background extraction algorithm MOG2 to separate the background and the foreground. The foreground refers to a vehicle with displacement, and a vehicle with an abnormality on the road is judged as a background because there is no displacement. The image that the background is extracted detects an object using YOLOv4. It is determined that the vehicle is abnormal.

Pedestrian and Vehicle Distance Estimation Based on Hard Parameter Sharing (하드 파라미터 쉐어링 기반의 보행자 및 운송 수단 거리 추정)

  • Seo, Ji-Won;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.389-395
    • /
    • 2022
  • Because of improvement of deep learning techniques, deep learning using computer vision such as classification, detection and segmentation has also been used widely at many fields. Expecially, automatic driving is one of the major fields that applies computer vision systems. Also there are a lot of works and researches to combine multiple tasks in a single network. In this study, we propose the network that predicts the individual depth of pedestrians and vehicles. Proposed model is constructed based on YOLOv3 for object detection and Monodepth for depth estimation, and it process object detection and depth estimation consequently using encoder and decoder based on hard parameter sharing. We also used attention module to improve the accuracy of both object detection and depth estimation. Depth is predicted with monocular image, and is trained using self-supervised training method.

Analysis of Floating Population in Schools Using Open Source Hardware and Deep Learning-Based Object Detection Algorithm (오픈소스 하드웨어와 딥러닝 기반 객체 탐지 알고리즘을 활용한 교내 유동인구 분석)

  • Kim, Bo-Ram;Im, Yun-Gyo;Shin, Sil;Lee, Jin-Hyeok;Chu, Sung-Won;Kim, Na-Kyeong;Park, Mi-So;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • In this study, Pukyong National University's floating population survey and analysis were conducted using Raspberry Pie, an open source hardware, and object detection algorithms based on deep learning technology. After collecting images using Raspberry Pie, the person detection of the collected images using YOLO3's IMAGEAI and YOLOv5 models was performed, and Haar-like features and HOG models were used for accuracy comparison analysis. As a result of the analysis, the smallest floating population was observed due to the school anniversary. In general, the floating population at the entrance was larger than the floating population at the exit, and both the entrance and exit were found to be greatly affected by the school's anniversary and events.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.

Unauthorized person tracking system in video using CNN-LSTM based location positioning

  • Park, Chan;Kim, Hyungju;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.77-84
    • /
    • 2021
  • In this paper, we propose a system that uses image data and beacon data to classify authorized and unauthorized perosn who are allowed to enter a group facility. The image data collected through the IP camera uses YOLOv4 to extract a person object, and collects beacon signal data (UUID, RSSI) through an application to compose a fingerprinting-based radio map. Beacon extracts user location data after CNN-LSTM-based learning in order to improve location accuracy by supplementing signal instability. As a result of this paper, it showed an accuracy of 93.47%. In the future, it can be expected to fusion with the access authentication process such as QR code that has been used due to the COVID-19, track people who haven't through the authentication process.

2-Stage Detection and Classification Network for Kiosk User Analysis (디스플레이형 자판기 사용자 분석을 위한 이중 단계 검출 및 분류 망)

  • Seo, Ji-Won;Kim, Mi-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2022
  • Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.

Worker Collision Safety Management System using Object Detection (객체 탐지를 활용한 근로자 충돌 안전관리 시스템)

  • Lee, Taejun;Kim, Seongjae;Hwang, Chul-Hyun;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1259-1265
    • /
    • 2022
  • Recently, AI, big data, and IoT technologies are being used in various solutions such as fire detection and gas or dangerous substance detection for safety accident prevention. According to the status of occupational accidents published by the Ministry of Employment and Labor in 2021, the accident rate, the number of injured, and the number of deaths have increased compared to 2020. In this paper, referring to the dataset construction guidelines provided by the National Intelligence Service Agency(NIA), the dataset is directly collected from the field and learned with YOLOv4 to propose a collision risk object detection system through object detection. The accuracy of the dangerous situation rule violation was 88% indoors and 92% outdoors. Through this system, it is thought that it will be possible to analyze safety accidents that occur in industrial sites in advance and use them to intelligent platforms research.

Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices (모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러)

  • Na, Yong-Seok;Son, Hyun-Wook;Kim, Hyung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 2022
  • This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).

A Study on the Improvement of Construction Site Worker Detection Performance Using YOLOv5 and OpenPose (YOLOv5 및 OpenPose를 이용한 건설현장 근로자 탐지성능 향상에 대한 연구)

  • Yoon, Younggeun;Oh, Taekeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.735-740
    • /
    • 2022
  • The construction is the industry with the highest fatalities, and the fatalities has not decreased despite various institutional improvements. Accordingly, real-time safety management by applying artificial intelligence (AI) to CCTV images is emerging. Although some research on worker detection by applying AI to images of construction sites is being conducted, there are limitations in performance expression due to problems such as complex background due to the nature of the construction industry. In this study, the YOLO model and the OpenPose model were fused to improve the performance of worker detection and posture estimation to improve the detection performance of workers in various complex conditions. This is expected to be highly useful in terms of unsafe behavior and health management of workers in the future.