• Title/Summary/Keyword: YOLOv10

Search Result 268, Processing Time 0.043 seconds

Deep Learning based Distress Awareness System for Small Boat (딥러닝 기반 소형선박 승선자 조난 인지 시스템)

  • Chon, Haemyung;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.281-288
    • /
    • 2022
  • According to statistics conducted by the Korea Coast Guard, the number of accidents on small boats under 5 tons is increasing every year. This is because only a small number of people are on board. The previously developed maritime distress and safety systems are not well distributed because passengers must be equipped with additional remote equipment. The purpose of this study is to develop a distress awareness system that recognizes man over-board situations in real time. This study aims to present the part of the passenger tracking system among the small ship's distress awareness situational system that can generate passenger's location information in real time using deep learning based object detection and tracking technologies. The system consisted of the following steps. 1) the passenger location information is generated in the form of Bounding box using its detection model (YOLOv3). 2) Based on the Bounding box data, Deep SORT predicts the Bounding box's position in the next frame of the image with Kalman filter. 3) When the actual Bounding Box is created within the range predicted by Kalman-filter, Deep SORT repeats the process of recognizing it as the same object. 4) If the Bounding box deviates the ship's area or an error occurs in the number of tracking occupant, the system is decided the distress situation and issues an alert. This study is expected to complement the problems of existing technologies and ensure the safety of individuals aboard small boats.

Deep-learning-based gestational sac detection in ultrasound images using modified YOLOv7-E6E model

  • Tae-kyeong Kim;Jin Soo Kim;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.627-637
    • /
    • 2023
  • As the population and income levels rise, meat consumption steadily increases annually. However, the number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. Information and Communications Technology (ICT) has begun to be applied to reduce labor and production costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from sigmoid-weighted linear unit (SiLU) to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to bicubic to improve performance. The model trained with the original model using the original data achieved mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 89.8% was achieved.

An Analysis of Plant Diseases Identification Based on Deep Learning Methods

  • Xulu Gong;Shujuan Zhang
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.319-334
    • /
    • 2023
  • Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Vehicle detection and tracking algorithm based on improved feature extraction

  • Xiaole Ge;Feng Zhou;Shuaiting Chen;Gan Gao;Rugang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2642-2664
    • /
    • 2024
  • In the process of modern traffic management, information technology has become an important part of intelligent traffic governance. Real-time monitoring can accurately and effectively track and record vehicles, which is of great significance to modern urban traffic management. Existing tracking algorithms are affected by the environment, viewpoint, etc., and often have problems such as false detection, imprecise anchor boxes, and ID switch. Based on the YOLOv5 algorithm, we improve the loss function, propose a new feature extraction module to obtain the receptive field at different scales, and do adaptive fusion with the SGE attention mechanism, so that it can effectively suppress the noise information during feature extraction. The trained model improves the mAP value by 5.7% on the public dataset UA-DETRAC without increasing the amount of calculations. Meanwhile, for vehicle feature recognition, we adaptively adjust the network structure of the DeepSort tracking algorithm. Finally, we tested the tracking algorithm on the public dataset and in a realistic scenario. The results show that the improved algorithm has an increase in the values of MOTA and MT etc., which generally improves the reliability of vehicle tracking.

Wildfire Detection Method based on an Artificial Intelligence using Image and Text Information (이미지와 텍스트 정보를 활용한 인공지능 기반 산불 탐지 방법)

  • Jae-Hyun Jun;Chang-Seob Yun;Yun-Ha Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.19-24
    • /
    • 2024
  • Global climate change is causing an increase in natural disasters around the world due to long-term temperature increases and changes in rainfall. Among them, forest fires are becoming increasingly large. South Korea experienced an average of 537 forest fires over a 10-year period (2013-2022), burning 3,560 hectares of forest. That's 1,180 soccer fields(approximately 3 hectares) of forest burning every year. This paper proposed an artificial intelligence based wildfire detection method using image and text information. The performance of the proposed method was compared with YOLOv9-C, RT-DETR-Res50, RT-DETR-L, and YOLO-World-S methods for mAP50, mAP75, and FPS, and it was confirmed that the proposed method has higher performance than other methods. The proposed method was demonstrated as a forest fire detection model of the early forest fire detection system in the Gangwon State, and it is planned to be advanced in the direction of fire detection that can include not only forest areas but also urban areas in the future.

Improved CNN Algorithm for Object Detection in Large Images

  • Yang, Seong Bong;Lee, Soo Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Conventional Convolutional Neural Network(CNN) algorithms have limitations in detecting small objects in large image. In this paper, we propose an improved model which is based on Region Of Interest(ROI) selection and image dividing technique. We prepared YOLOv3 / Faster R-CNN algorithms which are transfer-learned by airfield and aircraft datasets. Also we prepared large images for testing. In order to verify our model, we selected airfield area from large image as ROI first and divided it in two power n orders. Then we compared the aircraft detection rates by number of divisions. We could get the best size of divided image pieces for efficient small object detection derived from the comparison of aircraft detection rates. As a result, we could verify that the improved CNN algorithm can detect small object in large images.

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.

A Development on Deep Learning-based Detecting Technology of Rebar Placement for Improving Building Supervision Efficiency (감리업무 효율성 향상을 위한 딥러닝 기반 철근배근 디텍팅 기술 개발)

  • Park, Jin-Hui;Kim, Tae-Hoon;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.93-103
    • /
    • 2020
  • The purpose of this study is to suggest a supervisory way to improve the efficiency of Building Supervision using Deep Learning, especially object detecting technology. Since the establishment of the Building Supervision system in Korea, it has been changed and improved many times systematically, but it is hard to find any improvement in terms of implementing methods. Therefore, the Supervision is until now the area where a lot of money, time and manpower are needed. This might give a room for superficial, formal and documentary supervision that could lead to faulty construction. This study suggests a way of Building Supervision which is more automatic and effective so that it can lead to save the time, effort and money. And the way is to detect the hoop-bars of a column and count the number of it automatically. For this study, we made a hoop-bar detecting network by transfor learnning of YOLOv2 network through MATLAB. Among many training experiments, relatively most accurate network was selected, and this network was able to detect rebar placement in building site pictures with the accuracy of 92.85% for similar images to those used in trainings, and 90% or more for new images at specific distance. It was also able to count the number of hoop-bars. The result showed the possibility of automatic Building Supervision and its efficiency improvement.

Real Time Hornet Classification System Based on Deep Learning (딥러닝을 이용한 실시간 말벌 분류 시스템)

  • Jeong, Yunju;Lee, Yeung-Hak;Ansari, Israfil;Lee, Cheol-Hee
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1141-1147
    • /
    • 2020
  • The hornet species are so similar in shape that they are difficult for non-experts to classify, and because the size of the objects is small and move fast, it is more difficult to detect and classify the species in real time. In this paper, we developed a system that classifies hornets species in real time based on a deep learning algorithm using a boundary box. In order to minimize the background area included in the bounding box when labeling the training image, we propose a method of selecting only the head and body of the hornet. It also experimentally compares existing boundary box-based object recognition algorithms to find the best algorithms that can detect wasps in real time and classify their species. As a result of the experiment, when the mish function was applied as the activation function of the convolution layer and the hornet images were tested using the YOLOv4 model with the Spatial Attention Module (SAM) applied before the object detection block, the average precision was 97.89% and the average recall was 98.69%.