Acknowledgement
이 연구는 2020년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 이공분야기초연구사업임. 과제번호 : 2019R1A2C2006983
References
- An, Y., & Jang, K. (2017). Deep Learnig-Based Structural Crack Evalution Technique Through UAV-Mounted Hybrid Image Scanning. Journal of the Korean Association for Shell and Spatial Structures, 17(4), 20-26.
- Choi, H., Lim, S., Cho, S., Kang, Y., Kim, M., Lee, J., & Park, G. (2018). Intelligent Integrated Parking Control System using Yolo. 2019 IEIE Fall Conference, 469-472.
- Dang, X., & Kim, E. (2019) Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2. Journal of Broadcast Engineering, 24(5), 713-725. https://doi.org/10.5909/JBE.2019.24.5.713
- Geon-seol-gwan-li-tim(건설관리팀) (2006). gam-li-je-do-ui haeg-sim gil-la-jab-i(감리제도의 핵심 길라잡이), MINISTRY OF CONSTRUCTION & TRANSPORTATION, 1.
- Girshick, R, Donahue, J, Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and sementic segmentation. arXiv:1311.2524v5.
- Girshick, R. (2015). Fast R-CNN. arXiv: 1504.08083v2.
- Gu, H., Seo, Ji., & Choo, S. (2019). A Development of Facade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling. Journal of the Architectural Institute of Korea Planning & Design, 35(12), 43-53. https://doi.org/10.5659/JAIK_PD.2019.35.12.43
- He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. arXiv:1406.4729v4
- Hwan, E. (2007). A Study on the Integration of the Construction Supervision. Journal of the Architectural Institute of Korea Structure & Construction, 23(11), 153-160.
- Jeong, Y., Ansari, I., Shim, J., & Lee, J. (2017). A Car Plate Area Detection System Using Deep Convolution Neural Network. Journal of Korea Multimedia Society, 20(8), 1166-1174. https://doi.org/10.9717/kmms.2017.20.8.1166
- Kim, J., Jung, Y., & Rhim, H. (2017) Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques. Journal of the Korea Institute of Building Construction, 17(6), 545-557. https://doi.org/10.5345/JKIBC.2017.17.6.545
- Kim, J., Song, J., Kim, H., & Lee, J. (2017). Appoach to Interworking between the Deep Learning-based Object Detection of Office Furniture and Appliance and Information Management System. Journal of Korea Facility Management Association. 12(2), 73-80
- Kim, Y., & Kim, U. (2008). A Study on Comparative Analysis for Improvement of Architectural Construction Supervisory System. Journal of the Architectural Institute of Korea Planning & Design, 24(11), 47-56.
- Kim, J., & Choe, T. (2019). Fast Baseball Player Location Detection System using Convolutional Neural Networks for Real Time Broadcast. KIISE Transaction on Computing Practices, 25(3), 171-178. https://doi.org/10.5626/ktcp.2019.25.3.171
- Kim, S. (2011). A Study on the Development of an Architectural Inspection Process Model Applied Building Information Modeling. Journal of the Architectural Institute of Korea Planning & Design, 27(8), 169-180.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012.
- Lee, A., Park, S., & Hong, J. (2018). Development of a Yolo-Based System for Preventinon of Wildlife Damage. Proceedings of KIISE Conference, (2018), 1897-1899.
- Lee, J., & Jang, G. (2018). Synthetic Training Data Generation for Robust Detection of Cursive Hanja Characters Using YOLO Object Detector. Journal of the Institute of Electronics and Information Engineers, 55(7), 40-47. https://doi.org/10.5573/ieie.2018.55.7.40
- Lee, M., Seo, G., Nam, H., Kim, K., & Kim, Y. (2019). An Automated Seat Checking Using Image Object Detection. 2019 Korea Computer Congress, (2019), 1645-1647.
- Lee, M., Kang, J., & Lim, S. (2020). Design of YOLO-based Removal System for Pet Monitoring. Journal of the Korea Institute of Information and Communication Engineering, 24(1), 22-27.
- Lee, N., Jo, C., & Lee, K. (2019). Real-Time Violence Detection System using YOLO. 2019 IEIE Fall Conference, (2019), 754-755.
- Lee, O., Mun, T., & Lee. D. (2019). Safety equipment wearing detection using YOLO based on deep learning. 2019 IEIE Fall Conference, 829-830.
- Lee, S., & Kim, J. (2019). Robot Arm Control System using Deep Learning Object Detection. Proceeding of the Korean Society of Computer Information Conference, 27(1), 255-256.
- Lee, S., Huynh, T., Park, J., & Kim, J. (2019). Bolt-Lossening Detection using Vision-Based Deep Learning Algorithm and Image Processing Method. Journal of Computational structural engineering Institute of Korea, 32(4), 265-272. https://doi.org/10.7734/COSEIK.2019.32.4.265
- Lee, S., Lee, K., & Lee, J. (2019). Damage Detectoin in Truss Structures Using Deep Learning Techniques. Journal of Korean Association for Spatial Structures, 19(1), 99-100.
- Lee, Y., Kim, B., & Cho. S. (2018). Image-based Spalling Detection of Concrete Structure Using Deep Learning. Journal of the Korea Concrete Institute, 30(1), 91-99. https://doi.org/10.4334/jkci.2018.30.1.091
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & Berg, A. C. (2016). Sing Shot MultiBox Detetor. arXiv:1512.02325v5.
- Noh, D., & Jeong, B. (2003). A study on the Management Information System for Supporting the Supervision of Construction Workplace. Journal of the Korea Institute of Building Construction, 3(2), 85-93. https://doi.org/10.5345/JKIC.2003.3.2.085
- Park, H., Oh, U., & Park, S. (2004). A Study on the Supervision Systems in the Housing Construction Projects. Journal of the Architectural Institute of Korea Structure & Construction, 20(9), 177-185.
- Park, H., & Shin, E. (2005). Improvement Plan and Performance Results Analysis of the Supervision Systems in Public Construction Projects. Journal of the Architectural Institute of Korea Structure & Construction, 21(9), 177-188.
- Park, H., Han, J., & Shin, E. (2008). Development of Supervision System in Crowd-used Building. Journal of the Architectural Institute of Korea Structure & Construction, 25(5), 195-204.
- Ra, J., Oh, K., & Choi, Y. (2016). Exploratory Study on Improvement Direction of Information System Audit. Journal of Korean Association for Regional Information Society, 19(3), 91-107.
- Redmond, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640v5.
- Redmond, J., & Farhad, A. (2016). YOLO9000: Better, Faster, Stronger. arXiv:1612.08242v1.
- Redmond, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv:1804.02767v1.
- Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv:1506.01497v3.
- Shim, S., & Choi, S. (2019). Development on Identification Algorithm of Risk Situation around Construction Vehicle using YOLO-v3. Journal of the Korea Academia-Industrial cooperation Society, 20(7), 622-629. https://doi.org/10.5762/KAIS.2019.20.7.622
- Yang, S., Sohn, K., Jeong, J., & Kim, H. (2019). SSD-based Fire Recognition and Notification System Linked with Power Line Communication. Journal of IKEEE, 23(3), 777-784. https://doi.org/10.7471/IKEEE.2019.23.3.777
- Yoo, J., Han, D., Hur, C., & Oh, U. (2019). YOLO-based Walking Assistance Application for Blind People. 2019 Korea Computer Congress, (2019), 1776-1778.
- http://kr.mathworks.com/