• 제목/요약/키워드: YCbCr 영상

검색결과 121건 처리시간 0.025초

제스처 인식을 위한 피부영역 분할기법 및 추적 (Skin segmentation and hand tracking for gesture recognition)

  • 채승호;서종훈;한탁돈
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.371-373
    • /
    • 2012
  • 본 논문에서는 컬러 영상 기반에서 배경에 강인한 피부 영역 검출 기법을 제안하고 손 인식기법을 활용한 응용프로그램을 제안한다. 코드북 모델[1]을 이용하여 배경/전경을 분리하고, 분리된 전경에서 피부색정보를 이용하여 관심영역을 도출한다. 피부 영역을 검출하기 위한 단계에서는 YCbCr, HSV, LUV 색상 모델의 혼합하여 피부색 후보 영역에 대한 임계구간을 통해 강인한 피부 영역을 분할한다. 분할된 영역을 관심영역으로 설정하고 Kalman filter를 이용하여 영역을 추적한다. 결과적으로 복잡하고 고정된 배경에서 조명에 강인한 피부 영역 분할 및 추적이 가능하며 이를 응용한 사용자 인터페이스로 사용될 수 있다.

  • PDF

SoC 영상 보안 시스템의 실시간 처리를 위한 IP 개발 (The IP development for the real-time process of SoC image protection system)

  • 정광성;문철홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.605-606
    • /
    • 2008
  • The distance detection system receives stereo video input through 2 CCD cameras. Using a decoder, the image is changed to the YCbCr4:2:2 format and only the Y signal is saved in the 4*256*8bit shift register of the Dual-Port SRAM. As a result of the matching procedure, the Depth value, which is the distance information, is saved in SRAM, and the Depth Map is made and output to the TFT-LCD screen.

  • PDF

복잡한 영상에서 적응적 에지검출을 이용한 텍스트 추출 알고리즘 연구 (Text Extraction Algorithm in Complex Images using Adaptive Edge detection)

  • 신성;김선동;백영현;문성룡
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.251-252
    • /
    • 2007
  • The thesis proposed the Text Extraction Algorithm which is a text extraction algorithm which uses the Coiflet Wavelet, YCbCr Color model and the close curve edge feature of adaptive LoG Operator in order to complement the demerit of the existing research which is weak in complexity of background, variety of light and disordered line and similarity of text and background color. This thesis is simulated with natural images which include naturally text area regardless of size, resolution and slant and so on of image. And the proposed algorithm is confirmed to an excellent by compared with an existing extraction algorithm in same image.

  • PDF

색상 정보를 이용한 영상 검색 기법 (Image Retrieval Method Using Color Descriptor)

  • 조재훈;이상호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.69-76
    • /
    • 2008
  • Recently, as the multimedia processing application increases rapidly by going on increasing multimedia data, the efficient retrieval method of image information is required in many fields of application and becoming the matter of major concern. Furthermore, in the last few years rapid improvements in hardware technology have made it possible to process, store and retrieve huge amounts of data in a multimedia format. As a result, Content-Based Image Retrieval (CBIR) has been receiving widespread interest during the last decade. This paper propose the content-based retrieval system as a method for performing image retrieval through the effective feature analysis of the object of significant meaning by using YCbCr channel merging on the basis of the characteristics of man's visual system.

  • PDF

스테레오 비젼 기반의 능동형 물체 추적 시스템 (Active Object Tracking System based on Stereo Vision)

  • 고정환
    • 전자공학회논문지
    • /
    • 제53권4호
    • /
    • pp.159-166
    • /
    • 2016
  • 본 논문에서는 지능적인 보안 시스템 구현의 새로운 접근 방식으로, 인공지능형 시각 시스템에 기반한 팬/틸트 탑재형 스테레오 카메라의 기하학적 정보를 이용한 능동형 물체 추적 시스템을 제안하였다. 제안된 시스템에서는 먼저, 스테레오 카메라에서 입력된 영상으로 부터 YCbCr 컬러 모델과 위상형 상관 기법을 사용하여 표적 얼굴영역의 중심좌표를 검출한 다음, 지능형 시각 시스템에 기반한 팬/틸트 탑재형 스테레오 카메라의 능동적인 제어각도 산출을 통해 표적의 다양한 변화에 관계없이 표적의 3차원 좌표를 실시간적으로 검출하고, 이를 통한 표적 대상의 적응적인 신체 크기 추정을 수행하였다. 각기 다른 신장을 가진 3사람의 다양한 이동경로를 가진 480 프레임의 테스트용 스테레오 영상을 사용한 실험 결과, 표적의 추정된 신체 크기값 역시 계산치 및 측정치 사이의 표준편차가 평균 1.03의 작은 값으로 유지됨은 물론, 제안된 시스템에서 계산된 좌표값과 실제 실험대상으로 참여한 사람의 정확한 실제 위치와의 차이 역시 평균 1.2cm 미만의 오차와 전체적으로 1.18 %의 오차를 보임으로써 이를 통한 새로운 실시간 스테레오 표적 감시추적 시스템의 구현 가능성을 제시하였다.

팬/틸트 제어기반의 스데레오 카메라의 기하학적 정보를 이용한 새로운 높이 추정기법 (A New Height Estimation Scheme Using Geometric Information of Stereo Camera based on Pan/tilt control)

  • 고정환;김은수
    • 한국통신학회논문지
    • /
    • 제31권2C호
    • /
    • pp.156-165
    • /
    • 2006
  • 본 논문에서는 지능적인 보안 시스템 구현의 새로운 접근 방식으로, 인공지능형 시각 시스템에 기반한 팬/틸트 탑재형 스테레오 카메라의 기하학적 정보를 이용한 사람 키 높이 추정기법을 제안하였다. 제안된 시스템에서는 먼저, 스데레오 카메라에서 입력된 영상으로 부터 YCbCr 컬러 모델과 위상형 상관 기법을 사용하여 표적 얼굴영역의 중심좌표를 검출한 다음, 지능형 시각 시스템에 기반한 팬/틸트 탑재형 스테레오 카메라의 능동적인 제어각도 산출을 통해 표적의 다양한 변화에 관계없이 표적의 3차원 좌표를 실시간적으로 검출하고, 이를 통한 표적 대상의 적응적인 신체 크기 추정을 수행하였다. 각기 다른 신장을 가진 3사람의 다양한 이동경로를 가진 480 프레임의 테스트용 스테레오 영상을 사용한 실험 결과, 표적의 추정된 신체 크기값 역시 계산치 및 측정치 사이의 표준편차가 평균 1.03의 작은 값으로 유지됨은 물론, 제안된 시스템에서 계산된 좌표값과 실제 실험대상으로 참여한 사람의 정확한 실제 위치와의 차이 역시 평균 1.2cm 미만의 오차와 전체적으로 1.18$\%$의 오차를 보임으로써 이를 통한 새로운 실시간 스테레오 표적 감시추적 시스템의 구현 가능성을 제시하였다.

특징 지도를 이용한 중요 객체 추출 (Extraction of Attentive Objects Using Feature Maps)

  • 박기태;김종혁;문영식
    • 대한전자공학회논문지SP
    • /
    • 제43권5호
    • /
    • pp.12-21
    • /
    • 2006
  • 본 논문에서는 컬러 영상에서 배경의 복잡도와 객체의 위치에 관계없이 영상 내에 존재하는 중요 객체를 자동으로 추출하는 방법을 제안한다. 제안하는 방법은 중요 객체를 추출하기 위해 에지(edge) 정보와 색상(color) 정보를 이용한 특징 지도를 사용한다. 또한, 효과적인 객체 추출을 위해서 참조 지도(reference map)를 제안한다. 참조 지도를 생성하기 위해서는 영상에서 사람의 시각에 두드러지게 구분되는 영역을 표현하는 특징 지도(feature map)를 먼저 생성한다. 그런 다음, 특징 지도들을 효과적으로 결합하여 배경의 영향을 최소화 하면서, 중요 객체가 존재할 확률이 높은 영역들을 포함하는 참조 지도를 생성한다. 특징 지도를 생성하기 위해서는 밝기 차 정보를 나타내는 에지와 YCbCr 컬러와 HSV 컬러 공간에서의 색상 성분을 사용하며, 특징 지도에 대한 생성 방법은 영상 내에서 밝기차이와 색상차이에 의해서 나타나는 경계 부분을 추출하는 방법을 사용한다. 최종적으로 중요 객체가 존재하는 영역을 나타내기 위해서 참조 지도와 특징 지도들을 결합한 결합 지도(combination map)를 생성한다. 결합 지도는 중요 객체의 외곽선 정보만을 표현하기 때문에, 객체 전체를 표현할 수 있는 객체 후보 영역을 추출하는데, 이를 위해서는 객체 후보 영역을 추출하기 위해서 convex hull 알고리즘을 사용한다. Convex hull 알고리즘에 의해서 추출된 영역은 여전히 배경 부분을 포함하고 있으므로, 영상 분할 방법을 적용하여 배경을 제거한 후 영상에서의 중요 객체를 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 평균적으로 84.3%의 정확율과 81.3%의 재현율의 성능을 보였다.

일반화 능력이 향상된 CNN 기반 위조 영상 식별 (CNN-Based Fake Image Identification with Improved Generalization)

  • 이정한;박한훈
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.

안드로이드 기반의 도로 밝기 측정 어플리케이션 구현 (A Road Luminance Measurement Application based on Android)

  • 최영환;김홍래;홍민
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.49-55
    • /
    • 2015
  • 최근 5년간의 주 야간별 교통사고 통계에 따르면 대부분의 자동차 교통사고는 주간보다 야간에 더 많이 발생했다. 교통사고는 다양한 원인으로 발생하게 되는데 그 중 중요한 요소는 조명 미설치 또는 조명 위치의 부적합으로 운전자의 시야 혼란을 야기하여 교통사고를 유발하게 된다. 본 논문은 부적절한 도로 조명 시설 위치와 미설치 구역을 파악하고 관련 정보들을 데이터베이스화 하였다. 이를 위해 운전자의 위치 정보, 주행 정보, 도로 밝기 정보를 스마트폰을 이용하여 실시간으로 데이터베이스 서버에 저장하는 도로 밝기 측정 어플리케이션을 설계 및 구현하였다. 본 어플리케이션은 안드로이드 NDK을 이용하여 Native C/C++ 환경에서 구현되었으며, 이에 따라 자바나 다른 언어로 작성된 어플리케이션 보다 연산속도를 향상시켰다. 도로 밝기를 측정하기 위하여 카메라 영상인 RGB 색 공간의 영상을 YCbCr 색 공간의 영상으로 변환하여 휘도를 측정한다. 이를 위해 먼저 차선을 검출하고 도로 밝기 검출 영역의 휘도 값을 계산하여 데이터베이스에 저장한다. 또한 스마트폰의 카메라를 이용하여 실시간으로 도로의 영상을 입력 받고 도로의 차선부분에 대한 관심영역을 지정하여 연산 속도를 향상시켰다. 관심영역의 영상은 Grayscale 영상으로 변환하고 Canny 에지 검출기를 사용하여 외곽선을 추출하고 Hough line transform을 적용하여 차선의 후보군을 선별한다. 선별된 후보 차선의 기울기를 계산하여 양쪽의 차선을 선정한다. 양쪽 차선이 검출되면 차선의 교차점으로부터 아래로 20픽셀의 높이를 가진 삼각형을 도로 밝기 측정범위로 설정한다. 삼각형 부분의 모든 픽셀에 대한 R, G, B값을 추출하여 Y값을 계산하고 픽셀 밝기 값의 평균을 0부터 100사이의 값으로 계산하여 검은색부터 초록색으로 도로의 밝기를 표현하였다. 계산된 60m 전방의 도로 밝기 값은 스마트폰의 GPS 센서를 통해 측정된 운전자의 주행 정보와 위치 정보를 획득하여 10분 간격으로 무선통신을 통해 데이터베이스 서버에 저장하였다. 향후 수집된 도로 밝기 정보들은 스마트폰 어플리케이션이나 차량 내비게이션을 통해 운전자들에게 조심 운전을 경고하거나 효율적인 도로 조명 관리를 위한 개보수 계획에 반영될 수 있을 것으로 기대된다.

Mobile Display 장치를 위한 Adaptive-Filter 기반형 선명도 향상 알고리즘의 하드웨어 구현 (Implementation of Sharpness-Enhancement Algorithm based on Adaptive-Filter for Mobile-Display Apparatuses)

  • 임정욱;송진근;이성진;민경중;강봉순
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.109-112
    • /
    • 2007
  • 디지털 카메라의 출현과 Mobile 장비에서의 카메라 적용으로 인하여 디지털화된 이미지의 화질개선이 지속적으로 연구되고 있다. 특히, 센서로부터 입력된 이미지는 영상으로 출려되기 전 ISP(Image Signal Process) 과정을 거치게 되는데, 이 단계에서 이미지는 고주파 성분의 Noise 제거를 위한 LPF(Low Pass Filter)에 의해 고역의 주파수 성분이 상쇄되는 결과를 가진다. 이에 본 논문에서는 LPF(Low Pass Filter)에 의해 고역의 주파수 성분이 상쇄되는 결과를 가진다. 이에 본 논문에서는 LPF에 의해 Blurring된 이미지를 윤곽선 검출 알고리즘을 사용하지 않고, 이미지 윤곽선이 가질 수 있는 다양한 상태를 고려하여 적절한 계수를 가지는 Adaptive-HPF(High Pass Filter)를 사용함으로써 더욱 선명한 영상을 출력하는 알고리즘을 제안한다. 제안된 알고리즘의 하드웨어 구현시 Total Gate Count는 8700여 개로 Mobile 장치에 적용될 수 있다는 것을 검증하였다.

  • PDF