• Title/Summary/Keyword: YBCO thin films

Search Result 185, Processing Time 0.028 seconds

Thickness Effect on the Structural and Electrical Properties of YBCO Thin Films Grown by Pulsed Laser Deposition (PLD로 증착된 YBCO 박막의 두께에 따른 배향성과 전기적 특성 변화)

  • 허창회;한경보;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.617-619
    • /
    • 2001
  • The effect of the superconducting film thickness on the substrate temperature has been investigated. Superconducting YBCO thin films have been grown on MgO substrates by pulsed laser deposition. The dependence of the orientation of YBCO film on thickness has been investigated by X-ray diffraction technique. X-ray diffraction indicated that the film orientation was changed by increasing the film thickness and by changing the substrate temperature.

  • PDF

Growth of Large Area $YBa_{2}$$Cu_{3}$ $O_{7-x}$Thin Films by Hollow Cathode Discharge Sputtering System (할로우 캐소드 방전 스퍼터링 시스템을 이용한 대면적 $YBa_{2}$$Cu_{3}$ $O_{7-x}$박막 성장)

  • 서정대;강광용;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.26-29
    • /
    • 1999
  • Superconducting $YBa_{2}$$Cu_{3}$ $O_{7-x}$(YBCO) thin films were deposited on MgO(100) substrates using a hollow cathode discharge sputtering system. Influence of the sputtering conditions such as substrate temperature and discharge sputtering gas pressure on electrical and structural properties were investigated. It was found that YBCO thin films with zero resistance temperature higher than 85 K were obtained to the pressure 200 mToorr(Ar/O2=0.9), substrate temperature of $760^{\circ}C$, and target-substrate distance of 10 mm during film deposition. Homogeneous large area YBCO films with 2 inch diameter were also sucessfully fabricated by this method.

  • PDF

Fabrication and Characterization of High Temperature Superconducting Thin Film on Metallic Substrate Using Laser Ablation (레이저 증착법을 이용한 금속기판상 고온초전도 박막증착 및 특성분석)

  • Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.329-331
    • /
    • 1995
  • Laser ablation was used to fabricate superconducting $YBa_2Cu_3O_{7-x}$ (YBCO) thin films on metallic substrates with an YSZ buffer layer. An ArF excimer laser with an wavelength of 193 nm was used to deposit both YSZ buffer layer and superconducting thin film. The characterizations of thin films were performed and compared. With a 200 nm YSZ buffer layer, c-axis orientation and $T_c$=85 K were obtained for a 200 nm-thick YBCO film.

  • PDF

Improvement of Quench Properties of a Superconducting Fault Current Limiter Using YBCO Films by Serial and Parallel Combinations (직.병렬 조합에 의한 박막형 초전도 한류기의 퀜치특성 개선)

  • 최효상;김혜림;현옥배
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.315-319
    • /
    • 2003
  • We improved quench properties of a superconducting fault current limiter (SFCL) based on YBCO thin films by their serial and parallel combinations. The SFCL consisted of 6 switching elements fabricated of 4 inch-diameter YBCO thin films. The quench currents of the switching elements were distributed between 33.9 A and 35.6 A. Simple serial connection resulted in imbalanced power dissipation between switching elements even at the quench current difference of 0.6 A. On the other hand, $2{\times}2$ and $3{\times}2$ stack combinations produced simultaneous quenches. The $3{\times}2$ stack combination showed better simultaneous quench behavior than the $2{\times}2$ stacks. This is suggested to be because the currents between switching elements in parallel connection of the $3{\times}2$ stacks were more effectively redistributed than the $2{\times}2$ stacks.

HIGH TEMPERATURE SUPERCONDUCTING THIN FILMS PREP ARED BY PULSED LASER DEPOSITION

  • Park, Yong-Ki;Kim, In-Seon;Ha, Dong-Han;Hwang, Doo-Sup;Huh, Yun-Sung;Park, Jong-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.430-436
    • /
    • 1996
  • We have grown superconducting thin films on various substrates using a pulsed laser deposition (PLD) method. $YBa_2Cu_3O_7-\delta$ (YBCO) superconducting thin films with the superconducting transition temperature ($T_{c. offset}$) of 87K were grown on Si substrates using yittria-stabilized zirconia (YSZ) and $CeO_2$ double buffer layers. We have developed a large area pulsed laser deposition system. The system was designed to deposit up to 6 different materials on a large area substrate up to 7.5cm in diameter without breaking a vacuum. The preliminary runs of the deposition of YBCO superconducting thin films on $SrTiO_3$ substrate using this system showed a very uniform thickness profile over the entire substrate holder area. $T_{c}$ of the deposited YBCO thin film, however, was scattered depending on the position and the highest value was 85K.

  • PDF

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

Surface morphology of YBa$_{2}$Cu$_{3}$O$_{7}$ thin films prepared by the PLD method (PLD법으로 제작한 YBa$_{2}$Cu$_{3}$O$_{7}$ 반막의 표면상태 변화)

  • Han, Gi-Youl;Hwang, Tae-Jong;Yu, Seong-Cho;Lee, Kyu-Won;Ha, Dong-Han
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.66-69
    • /
    • 2000
  • We have observed the morphology of YBCO thin films grown on the SrTiO$_3$(100) substrates by the Pulsed Laser Deposition method. AFM and SEM images show that the YBCO grains grow spirally from their own seeds whereas outgrowths are considered to remain unchained as the film thickness increases. The images of various stages of film growth suggest that the outgrowths of 1000${\sim}$2000 ${AA}$ size are mainly formed at the very early stage of film growth. The results of XRD measurement clearly show that even a film of about 10 ${AA}$ thickness already forms orthorhombic YBCO structure although common superconducting resistivity behavior is known to be observed for the films with thickness above 100 ${AA}$.

  • PDF

Phase and microstructure evolution during the TFA-MOD process of YBCO films

  • Wee, Sung-Hun;Shin, Geo-Myung;Hong, Gye-Won;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.19-22
    • /
    • 2007
  • We report the phase and microstructure evolutions of metal trifluoroacetate (TFA) precursor films in the TFA-MOD process of YBCO films on the LAO (100) substrates. It was confirmed that the precursor films were decomposed into $Y_2O_3$, $BaF_2$, and CuO nanoparticles after the initial heat treatment up to 400$^{\circ}C$. After a subsequent heat treatment at higher temperatures ranging from 700 to 850$^{\circ}C$ for 2 h, these nano-sized phases are converted into YBCO films. High Jc(77K, sf)-YBCO thin films (over 2 MA/$cm^2$) were successfully fabricated with firing temperatures ranging from 775 to 850$^{\circ}C$ for 2 h, where films were composed of dense microstructures with large grains.

Size Effect on Quench Development in Au/YBCO Films (Au/YBCO 박막의 크기가 퀜치 거동에 미치는 영향)

  • Kim, H.R.;Yim, S.W.;Oh, S.Y.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.188-192
    • /
    • 2008
  • We investigated the size effect on quench development in $Au/YBa_2Cu_3O_7$ (YBCO) thin film meander lines on sapphire substrates. The meander lines were fabricated by patterning YBCO films coated with gold layers. The lines were subjected to simulated AC fault current, and immersed in liquid nitrogen during the experiment. After the initial rapid rise, the resistance increased moderately and then slowly. In 4 inch-diameter meander lines, the period during which the resistance increased moderately was considerably longer than in 2 inch-diameter line. Moderate increase of resistance was originated from quench propagation. The film temperature was about 180 K at the point when the propagation was completed. The rate of resistance increase after the quench completion was not affected by the film size.

  • PDF

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF