• 제목/요약/키워드: YAG(${Y_3}{Al_5}{O_{12}}$)

검색결과 82건 처리시간 0.023초

고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향 (Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+)

  • 원형석;;원창환;원형일
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.604-610
    • /
    • 2011
  • The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

Growth and characterization of $Al_{2}O_{3}-based\;Y_{3}Al_5O_{12},\;ZrO_{2}$ binary and ternary eutectic fibers

  • Lee, J.H.;Yoshikawa, A.;Kaiden, H.;Fukuda, T.;Yoon, D.H.;Waku, Y.
    • 한국결정성장학회지
    • /
    • 제11권4호
    • /
    • pp.170-175
    • /
    • 2001
  • It was possible to grow the $Al_{2}O_{3}$ based $Y_{3}A_{5}O_{12}(YAG),ZrO_{2}$ binary and ternary eutectic fibers using micro-pulling down method with a growing rate of 0.1~15 mm/min. While $Al_{2}O_{3}/ZrO_{2}$ showed cellular-lamellar structure, $Al_{2}O_{3}$/YAG and $Al_{2}O_{3}$/YAG/$ZrO_{2}$ternary eutectic fibers showed homogeneous Chinese script lamellar structures. The microstructures of $Al_{2}O_{3}/ZrO_{2}$ binary eutectic fibers changed with solidification rate from lamellar pattern to cellular structure. The interlamellar spacing agreed with the inverse-square-root dependance on pulling rate according to $\lambda$=$kv_p\;{-1/2}$. $Al_{2}O_{3}/ZrO_{2}$ binary eutectic fibers recorded the highest tensile strength of about 1560MPa at room temperature. $Al_2O_3/YAG/ZrO_2$ternary eutectic fiber showed excellent thermal stability to $1200^{\circ}C$ without significant decrease. The maximum strength of ternary eutectic fibers recorded were 1100MPa at $25^{\circ}C$ and 970MPa at $1200^{\circ}C$, respectively.

  • PDF

무가압 Annealing 한 Beta-SiC-$TiB_2$계 전도성 복합체의 특성에 미치는 YAG의 영향 (Effects of YAG on the Properties of the ${\beta}-SiC-TiB_2$ System Composites by Pressurless Annealing)

  • 이동윤;주진영;최광수;신용덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.67-70
    • /
    • 2002
  • The composites were fabricated 61vol% ${\beta}$-SiC and 39vol.% $TiB_2$ powders with the liquid forming additives of 8, 12, 16wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at $1650^{\circ}C$ for 4 hours to form YAG. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the Young's modulus showed the highest value of 82.29% and 54.60 Gpa for composites added with 16wt% $Al_2O_3+Y_2O_3$ additives at room temperature.

  • PDF

YAG:$Tb^{3+}$ 형광체 분말의 수열합성과 발광 특성 (The Luminescence Properties of YAG:$Tb^{3+}$ Phosphor Prepared by Hydrothermal Synthesis)

  • 김상문;지성훈;구자인;김태옥
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.745-750
    • /
    • 2000
  • YAG:Tb3+ as green phosphor were studied for the development of low voltage FED phosphor prepared by hydrothermal synthesis. We changed the concentration of luminescence center ion Tb3+ in hydrothermal reaction of which conditions were at 8M NH4OH as mineralizer, at 35$0^{\circ}C$ for 12hrs. As results, we could finally get the YAG:Tb3+ (Y3-xTbxAl5O12) powder of which particle size was about 0.2~1.0${\mu}{\textrm}{m}$. The excitation spectra and the green emitted spectra of YAG:Tb3+ phosphor powder were observed. When we doped 0.25 mol Tb to YAG, we could observe the maximum cathodoluminescence from YAG:Tb3+ phosphor and the chromaticity coordinate of the phosphor was shown x=0.35, y=0.56 in CIE1931 diagram.

  • PDF

수열반응 조건에 의한 YAG 분말의 특성과 형상제어 (Properties and Shape Control of YAG Powder Prepared by Hydrothermal Reaction)

  • 지성훈;김상문;구자인;김태옥
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.739-744
    • /
    • 2000
  • YAG(Y3Al5O12) as host material of YAG:Tb3+ was studied via hydrothermal synthesis of metal hydroxides. We changed the kind of mineralizer, the concentrations and process conditions in hydrothermal synthesis. As a result, we found, acicular YAG powders were obtained by the use of KOH as a mineralizer, the concentration of KOH affected the shape and size of YAG powder. Fine grained YAG were perpared by the use of NH4OH as a mineralizer and the concentration of NH4OH affected crystal phases but did not affect particle size. We could finally get the spherical looking YAG powder at 8 M NH4OH and at 35$0^{\circ}C$ for 12h. The average particle size was about 0.2${\mu}{\textrm}{m}$.

  • PDF

불소계 플라즈마에 노출된 YAG 세라믹스의 식각거동 및 XPS 분석 (Erosion Behavior of YAG Ceramics under Fluorine Plasma and their XPS Analysis)

  • 김경범;김대민;이정기;오윤석;김형태;김형순;이성민
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.456-461
    • /
    • 2009
  • Chemical composition and status of chemical bonding of the YAG($Y_3Al_5O_{12}$) ceramics after the exposure to fluorine plasma have been investigated using X-ray photoelectron spectroscopy, with the analysis on its erosion behavior. On the surface, F showed the maximum content, decreasing with depth, meanwhile the cation composition remained almost constant, irrespective of the position. The peaks due to Y in the reaction layer consisted of two kinds, showing the Y-O and Y-F bonds. These surface modifications under fluorine plasma seem to promote the erosion of the YAG ceramics. Excess addition of $Al_2O_3$ or $Y_2O_3$ into stoichiometric YAG produced 2nd phases of $Al_2O_3$ and $YAlO_3$, respectively, resulting in the slight difference in the local erosion rates. But, the overall average erosion rate was not sensitive to such excess additions of $Al_2O_3$ or $Y_2O_3$.

액장 소결한 $\beta-SiC-TiB_2$계 전도성 복합체의 특성 (The Properties of $\beta-SiC-TiB_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering)

  • 임승혁;신용덕;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.510-515
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of Al_2O_3+Y_2O_34. The result of phase analysis of composites by XRD revealed $\alpha-SIC(6H)\;TiB_2,\; and YAG(Al5Y3O12) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_34 contents because YAG of reaction between $Al_2O_3\; and\; Y_2O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. Owing to crack deflection crack bridging phase transition and TAG of fracture toughness mechanism the fracture toughness showed 7.1MPa.m1/2 for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $6.0\times10-4\Omega.cm\; and\; 3.1\times10-3/^{\circ}C4 respectively for composite added with 12wt% \Omega additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ) (Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ))

  • 신용덕;임승혁;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권6호
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF

$\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향 (Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$)

  • 윤세원;주진영;신용덕;여동훈;박기엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.