• Title/Summary/Keyword: Y-parameters

Search Result 46,709, Processing Time 0.063 seconds

Relation between Obesity Pattern Identification and Metabolic Parameters in Overweight and Obese Women (과체중 및 비만 여성에서 한방비만변증에 따른 체성분 및 대사관련 지표의 상관성)

  • Song, Miyoung;Kim, Hojun;Lee, Myeong-Jong
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.14 no.1
    • /
    • pp.24-28
    • /
    • 2014
  • Objectives: We conducted this study to analysis obesity pattern and obesity related blood parameters. Methods: A total of 64 overweight and obese (body mass index [BMI] ${\geq}23cm/kg^2$) women who had no other disease was recruited. Body composition and obesity related blood parameters were measured. Also subjects were given and filled out the Obesity pattern identification questionnaire. We analyzed the differences of body composition and blood parameters and measured correlations of BMI and blood parameters in each obesity pattern. Results: The distribution of obesity pattern was liver depression (35.6%), food accumulation (47.5%) and deficiency (pi and yang deficiency, 22.0%), in order. There were no significant differences age, body composition and obesity related blood parameters between obesity patterns. BMI and obesity related blood parameters, however, showed significant correlations depending on obesity patterns. Conclusions: We concluded that correlations between BMI and obesity related blood parameters were differed depending on obesity patterns.

Correlation Analysis for deriving Control Parameters in Vertical Shafts by Design of Experiments (실험계획법에 의한 수직샤프트 제어인자 도출을 위한 상관관계 분석)

  • Han, Hwa-Taik;Shin, Chul-Yong;Baek, Chang-In
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.895-900
    • /
    • 2008
  • It is the objective of the present study to conduct correlation analysis for deriving control parameters in vertical shafts using the results obtain by the design of experiments in the preceding research. The control parameters are categorized into objective parameters, derived parameters, condition parameters, operation parameters, and sensing parameters. The maximum pressure in the shaft should be sufficiently small in order to maintain exhaust hood performance. The pressure variations between floors should also be minimized in order to maintain uniform exhaust performance between floors and to save energy for excessive pressure drop in the shaft. The standard deviation based on -4Pa is proposed as an objective parameter to control pressure in shafts. The correlation equation has been obtained between the standard deviation and the sensing parameters of outdoor temperature and the pressure at the top of the shaft.

  • PDF

Comprehensive Empirical Equation for Assessing Atmospheric Corrosion Progression of Steel Considering Environmental Parameters

  • Sil, Arjun;Kumar, Vanapalli Naveen
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.174-188
    • /
    • 2020
  • Atmospheric corrosion is a natural surface degradation process of metal due to changes in environmental parameters in the surrounding atmosphere. It is very sensitive to environmental parameters such as temperature, relative humidity, sulphur dioxide, and chloride, making it a major global economic challenge. Existing forecasting empirical corrosion models including the ISO standard are based on statistical analysis of experimental studies without considering the behavior of atmospheric parameters. The present study proposes a reliable global empirical model for estimating short and long-term atmospheric corrosion rates based on environmental parameters and corrosion mechanisms obtained from a parametric study. Repercussion of atmospheric corrosion rate due to individual and combined influences of environmental parameters specifies their importance in the estimation. New global empirical coefficients obtained for environmental parameters are statistically established (R2 =0.998) with 95% confidence limit. They are validated using experimental datasets of existing studies observed at 88 different continental locations. The current proposed model can predict atmospheric corrosion by means of corrosion formation mechanisms influenced by combined effects of environmental parameters, further abating applicability limitations of location and time.

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.

On an ptimization problem of evasion parameters In minmax differential games

  • Yugai, L.P.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.495-508
    • /
    • 1997
  • The problem of optimization in choosing of evasion parameters in differential games is considered. Existence of optimal parameters is proved and algorithm of their is shown. The example is cited. This work adjoins investigations [1-11].

  • PDF

Concrete Stress Block Parameters for High-Strength Concrete : Recent Developments and Their Impact

  • Bae, Sun-Gjin
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.11-16
    • /
    • 2006
  • The use of the current ACI 318 stress block parameters has been reported to provide unconservative estimations of the moment capacities for high-strength concrete columns. Accordingly, several concrete stress block parameters have been recently proposed. This paper discusses various concrete stress block parameters for high-strength concrete and their influences on the code provisions. In order to adopt the proposed stress block parameters to the design code, it is necessary to understand the impact of the change of the stress block parameters on various aspects of the code provisions. For this purpose, the influence of using of different stress block parameters on the location of the neutral axis and the tensile strain in extreme tension steel as well as the axial and moment capacities are investigated. In addition, the influence on the prestressed concrete members is also elucididated.

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

Extraction of Extrinsic Parameters for GaAs MESFET by S-parameters (S-파라미터를 이용한 GaAs MESFET의 외부 파라미터 추출)

  • 조영송;나극환;박광호;신철재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.30-37
    • /
    • 1991
  • The modified method which determines the extrinsic parameters at the small signal equivalent model for GaAs MESFET is presented. It is important that extrinsic parameters are completely eliminated, in order to calculate exact intrinsic parameters. Extrinsic circuit is established by transmission lines, parasitic inductors and capacitors. After these are extracted by S-parameters, intrinsic parameters are calculated. Especially, frequency dependence of parastic inductance and capacitance is considerally constant.

  • PDF

Optimizing and Identification of Design Parameters of a Cylindrical Hydraulic Engine Mount by an Optimization Method (최적화 기법에 의한 원통형 유체 엔진마운트의 설계변수 동정 및 최적화)

  • Ahn, Young-Kong
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • In order to identify the design parameters of a hydraulic engine mount with a nonlinear characteristics, an experimental method has been used generally. The method takes a considerable time and expense because of preparing an experimental apparatus, conducting a test, and analyzing results. Therefore, this paper presents a simple method to identify the design parameters of a cylindrical hydraulic engine mount, and optimize the design parameters. The physical model and mathematical equations of the mount were derived, and values of the design parameters of the mount were identified by optimization method with minimizing difference between the analytical results with the equations and the experimental results. This method is more simpler than the conventional experiment method and identify successfully the design parameters. In addition, the technique can optimize the design parameters of the mount to improves the isolation performance of the mount.

A Study on Tire Radial Force Variation and Modal Testing (타이어 상하 힘변동과 모드 시험에 관한 연구)

  • Park, S.K.;Kim, J.K.;Song, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.55-59
    • /
    • 1998
  • This paper probes into the influence of tire uniformity on tire's modal parameters with the method of experimental modal analysis. Two radial tires of the same kind with different uniformity level are taken to be tested at different exciting points and real modal parameters are abstracted. The differences of their modal parameters are presented. Then tire transfer functions are constructed with experimental modal parameters and ideal modal parameters respectively. It is found that the measured transfer functions of tire of good uniformity are closer to ideal transfer function than that of tire of bad uniformity. The study shows evident interrelation of experimental modal parameters and tire uniformity, and further study should be of great value.

  • PDF