• 제목/요약/키워드: Y-parameters

검색결과 46,709건 처리시간 0.064초

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

Mode Analysis of Cascaded Four-Conductor Lines Using Extended Mixed-Mode S-Parameters

  • Zhang, Nan;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • 제16권1호
    • /
    • pp.57-65
    • /
    • 2016
  • In this paper, based on the mode analysis of four-conductor lines, the extended mixed-mode chain-parameters and S-parameters of four-conductor lines are estimated using current division factors. The extended mixed-mode chain-parameters of cascaded four-conductor lines are then obtained with mode conversion. And, the extended mixed-mode S-parameters of cascaded four-conductor lines can be predicted from the transformation of the extended chain-parameters. Compared to the extended mixed-mode S-parameters of four-conductor lines, the cross-mode S-parameters are induced in the extended mixed-mode S-parameters of cascaded four-conductor lines, due to the imbalanced current division factors of cascaded two sections. The generated cross-mode S-parameters make the equivalent different- and common-mode conductors not independent from each other again. In addition, a new mode conversion, which applies the imbalanced current division factors, between the extended mixed-mode S-parameters and standard S-parameters is also proposed in this paper. Finally, the validity of the proposed extended mixed-mode S-parameters and mode conversion is confirmed by a comparison of the simulated and estimated results of shielded cable.

단일 비전에서 칼만 필티와 차선 검출 필터를 이용한 모빌 로봇 주행 위치.자세 계측 제어에 관한 연구 (A Study on Measurement and Control of position and pose of Mobile Robot using Ka13nan Filter and using lane detecting filter in monocular Vision)

  • 이용구;송현승;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.81-81
    • /
    • 2000
  • We use camera to apply human vision system in measurement. To do that, we need to know about camera parameters. The camera parameters are consisted of internal parameters and external parameters. we can fix scale factor&focal length in internal parameters, we can acquire external parameters. And we want to use these parameters in automatically driven vehicle by using camera. When we observe an camera parameters in respect with that the external parameters are important parameters. We can acquire external parameter as fixing focal length&scale factor. To get lane coordinate in image, we propose a lane detection filter. After searching lanes, we can seek vanishing point. And then y-axis seek y-sxis rotation component(${\beta}$). By using these parameter, we can find x-axis translation component(Xo). Before we make stepping motor rotate to be y-axis rotation component(${\beta}$), '0', we estimate image coordinates of lane at (t+1). Using this point, we apply this system to Kalman filter. And then we calculate to new parameters whick make minimum error.

  • PDF

Determination of Physical Camera Parameters from DLT Parameters

  • Jeong Soo;Lee Changno;Oh Jaehong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.233-236
    • /
    • 2004
  • In this study, we analyzed the accuracy of the conversion from DLT parameters to physical camera parameters and optimized the use of DLT model for non-metric cameras in photogrammetric tasks. Using the simulated data, we computed two sets of physical camera parameters from DLT parameters and Bundle adjustment for various cases. Comparing two results based on the RMSE values of check points, we optimized the arrangement of GCPs for DLT.

  • PDF

실측을 통한 궤도설계 파라메타의 검증 (Experimental Verification of Design Parameters of Track)

  • 이지하;황성호;나성훈;김정환;서사범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1065-1070
    • /
    • 2004
  • When the track designer analyze the track structure uses many known & unknown parameters. Unknown parameters, equivalent rail support spring factor, unit rail support spring factor, track damping coefficient, should be assumed. Known parameters are section properties (area, section factor, etc), material properties(modulus of elasticity, mass, etc) and track conditions(wheel load, loading conditions, gauge, etc.). In the assumption of track design parameters, some parameters can be overestimated or under estimated. The purpose of this study is to verify design parameters used in track design, in the way of experimental measurements. Data of displacements, banding stresses, loads, accelerations are measurable at track site. From these data, unknown parameters are derived. Compare these assumed and derived parameters, estimate the entire track stability.

  • PDF

Coupling relevance vector machine and response surface for geomechanical parameters identification

  • Zhao, Hongbo;Ru, Zhongliang;Li, Shaojun
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1207-1217
    • /
    • 2018
  • Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.

유도전동기 구동시스템 평가를 위한 실시간 고조피 파라미터 분석장치 (Real-Time Harmonic Parameters Analyzer for Evaluating Induction Motor Drive System)

  • 임영철;정영국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.479-483
    • /
    • 1997
  • In general, motor parameters can be divided into mechanical/electrical parameters and harmonic parameters. Mechanical/electrical parameters identification of motor have been studying systematically for a long time. But, systematical study on harmonic parameters analysis for efficient motor drive system are very poor. The goal of this paper is to propose analyzing method of harmonic parameters for motor drive system with various experimental graphic screens and numerical results and to develope harmonic parameters analyzer. A developed analyzer is made up 586-PC and DSP (digital signal processor) board, motor drive system, power and harmonic parameters analyzing software for windows. Harmonic parameters are analyzed using correlation signal processing techniques based on the correlation between voltage and current waveforms. Analysis results are visualized by 3-D current coordinates, and it is compared and evaluated with conventional time/frequency domain. To verify the validity of the proposed system, 1/4HP capacitor run type single phase induction motor and thyristor speed controller is used for analyzing. Harmonic parameters of motor drive system is analyzed and verified, with varying fire angle of thyristor speed controller, and the proposed approach is to confirm validity.

  • PDF

설계 인자와 설계 목표를 이용한 진화 설계 및 재설계 (Evolutionary Design and Re-design Using Design Parameters and Goals)

  • 이강수;이건우
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.106-115
    • /
    • 1999
  • Design parameters and goals play important roles in design. Design goals are the required functions of the design elements and explicitly expressed by design parameters. Design parameters also indicate the relations among design elements, by which constraint networks can be constructed and some useful information can be induced. In this study, the mechanical design process is assumed to be the assignment of design goals and their realization through the evolutionary refinement of the design parameters. Thus an integrated design system is proposed to support the process of assigning the design goals and refining the values of the design parameters. In the design system, a genetic engine that utilizes a genetic algorithm is installed to simulate an iterative design process, which leads to an evolutionary design. The genetic engine treats design parameters as genes and design goals as evaluation function. Re-design and design modification are facilitated by the design parameters. The re-design can be activated in the design system by using the information stored in the design parameters when design parameters or goals are changed.

  • PDF

시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법 (A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses)

  • 정인승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

축류형 터빈 익형의 역설계에 의한 최소 형상변수에 관한 연구 (Study on the Minimization of Shape Parameters by Reverse Design of an Axial Turbine Blade)

  • 조수용;오군섭;윤의수;최범석
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.30-37
    • /
    • 2000
  • Several reverse design methods are developed and applied to the suction or pressure surface for finding design values of blade geometry for a given axial turbine blade. Re-designed blade profiles using shape parameters are compared with measured blade data. Essential shape parameters for blade design are induced by the procedure of reverse design for best fitting. Characteristics of shape parameters are evaluated through the system design method and restriction conditions of structural stability or aerodynamic flow loss. Some of shape parameters i.e blade radius or exit blade angle etc., are classified to weakly adjustable shape parameters, otherwise strongly adjustable shape parameters which would be applied for controlling blade shape. Average deviation values between the measured data and re-designed blade using shape parameters are calculated for each design method. Comparing with the average deviation for a given blade geometry, minimum shape parameters required to design a blade geometry are obtained.

  • PDF