• Title/Summary/Keyword: Y-capacitors

Search Result 1,424, Processing Time 0.03 seconds

A New Distribution System Power Flow Method Using Symmetrical Components (대칭성분을 이용한 3상 배전계통 조류계산 기법)

  • Choe, Jeong-Hwan;Jeong, Seong-Il;Park, Je-Yeong;Kim, Gwang-Ho;Kim, Jae-Eon;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper proposes a new power flow method for distribution system analysis by modifying the conventional back/forward sweep method using symmetrical components. Since the proposed method backward and forward sweeps with the variables expressed by symmetrical components, this method reduces computation time for matrix calculations; therefore, it is able to reduce the computational burden for real-time distribution network analysis. The proposed method was also developed to effectively analyze the unbalanced distribution system installing AVR(Auto Voltage Regulator), shunt capacitors. The proposed algorithm was compared with the conventional Back/forward Sweep method by applying both methods to three phase unbalanced distribution system of IEEE 123-bus model, and the test results showed that the proposed method would outperformed the conventional method in real-time distribution system analysis.

Electrical Properties of the (Ba,Sr)$TiO_3$Thin Films Prepared by Sol-Gel Method (Sol-Gel법으로 제조한 (Ba,Sr)$TiO_3$박막의 전기적 특성)

  • 이영희;이문기;정장호;류기원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.592-597
    • /
    • 2000
  • In this study (B $a_{0.5}$/S $r_{0.5}$)Ti $O_3$[BST(50/50)] ceramic thin films were prepared by the Sol-Gel method BST(50/50) stock solution was made and spin-coated on the Indium Tin Oxide(ITO)/glass substrate at 4000 rpm for 30 seconds. The coated films were dried at 35$0^{\circ}C$ for 10 minutes and annealed at 650~75$0^{\circ}C$ for 1 hour. The microstructural properties of the BST(50/50) thin film were studied by the XRD and AFM. The ferroelectric perovskite phase was formed at the annealing condition of 75$0^{\circ}C$ for 1 hour. Dielectric constant and loss of this thin were 370, 3.7% at room temperature respectively. The polarization switching voltage showed the good value of 3V. The leakage current density of the BST(50/50) thin film was 10$^{-7A}$c $m^2$with applied voltage of 1.5V. BST(50/50) thin film capacitors having good dielectric and electrical properties are expecting for the application to the dielectric material of DRAM.RAM.M.

  • PDF

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.

Interleaved ZVS DC/DC Converter with Balanced Input Capacitor Voltages for High-voltage Applications

  • Lin, Bor-Ren;Chiang, Huann-Keng;Wang, Shang-Lun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.661-670
    • /
    • 2014
  • A new DC/DC converter with zero voltage switching is proposed for applications with high input voltage and high load current. The proposed converter has two circuit modules that share load current and power rating. Interleaved pulse-width modulation (PWM) is adopted to generate switch control signals. Thus, ripple currents are reduced at the input and output sides. For high-voltage applications, each circuit module includes two half-bridge legs that are connected in series to reduce switch voltage rating to $V_{in}/2$. These legs are controlled with the use of asymmetric PWM. To reduce the current rating of rectifier diodes and share load current for high-load-current applications, two center-tapped rectifiers are adopted in each circuit module. The primary windings of two transformers are connected in series at the high voltage side to balance output inductor currents. Two series capacitors are adopted at the AC terminals of the two half-bridge legs to balance the two input capacitor voltages. The resonant behavior of the inductance and capacitance at the transition interval enable MOSFETs to be switched on under zero voltage switching. The circuit configuration, system characteristics, and design are discussed in detail. Experiments based on a laboratory prototype are conducted to verify the effectiveness of the proposed converter.

Design of 1.5 kV, 36 kJ/s High Voltage Capacitor Charger for Xenon Lamp Driving (제논램프 구동용 1.5 kV, 36 kJ/s 고전압 충전기 설계)

  • Cho, Chan-Gi;Song, Seung-Ho;Park, Su-Mi;Park, Hyeon-Il;Bae, Jung-Soo;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.18-19
    • /
    • 2017
  • This paper shows the design of the high voltage capacitor charger which using a modified series parallel resonant converter. The used silicon carbide Metal-Oxide Semiconductor Field Effect Transistor (SiC MOSFET) is proper for the few hundred kHz of high switching frequency to overcome the bulk resonant inductor and snubber capacitors. Furthermore, to increase the amount of the charging current, three phase delta transformer is used as well as the secondary sides are connected in parallel. In this paper, the design procedure of the high voltage capacitor charger is suggested and the output power is verified by the experimental results with the rated resistor load.

  • PDF

A Novel Non-Isolated DC-DC Converter using Single Switch and Voltage Multipliers with High Step-Up Voltage Gain and Low Voltage Stress Characteristics (고전압비와 낮은 전압 스트레스를 가진 단일 스위치와 전압 체배 회로를 이용한 새로운 비절연형 DC-DC 컨버터)

  • Tuan, Tran Manh;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.157-161
    • /
    • 2020
  • High voltage gain converters are essential for distributed power generation systems with renewable energy sources, such as fuel cells and solar cells, because of their low voltage characteristics. This paper introduces a novel nonisolated DC-DC converter topology developed by combining an inverting buck-boost converter and voltage multipliers. In the proposed converter, the input voltage is connected in series with the output, and the majority of the input power is directly delivered to the load. The voltage multipliers are stacked in series to achieve high step-up voltage gain. The voltage stress across all of the switches and capacitors can be significantly reduced. As a result, the switches with low voltage ratings can be used to achieve high efficiency and low cost. To verify the validity of the proposed topology, a 360-W prototype converter is built to obtain the experimental results.

Characterization of BLT/insulator/Si structure using $ZrO_2$ and $CeO_2$ insulator ($ZrO_2$$CeO_2$ 절연체를 이용한 BLT/절연체/Si 구조의 특성)

  • Lee, Jung-Mi;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.186-189
    • /
    • 2003
  • The MFIS capacitors were fabricated using a metalorganic decomposition method. Thin layers of $ZrO_2$ and $CeO_2$ were deposited as a buffer layer on Si substrate and BLT thin films were used as a ferroelectric layer. The electrical and structural properties of the MFIS structure were investigated. X -ray diffraction was used to determine the phase of the BLT thin films and the quality of the $ZrO_2$ and $CeO_2$ layer. AES show no interdiffusion and the formation of amorphous $SiO_2$ layer is suppressed by using the $ZrO_2$ and $CeO_2$ film as buffer layer between the BLT film and Si substrate. The width of the memory window in the C-V curves for the $BLT/ZrO_2/Si$ and $BLT/CeO_2/Si$ structure is 2.94 V and 1.3V, respectively. The experimental results show that the BLT-based MFIS structure is suitable for non-volatile memory FETs with large memory window.

  • PDF

Use of a capacitance voltage technique to study copper drift diffusion in low-k polyimide (C-V Technique을 이용한 low-k polyimide로의 구리의 drift diffusion 연구)

  • Choi, Yong-Ho;Lee, Heon-Yong;Kim, Jee-Gyun;Kim, Jung-Woo;Kim, Yoo-Kyuong;Park, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.137-140
    • /
    • 2003
  • Cu+ ions drift diffusion in different dielectric materials is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 1.lMV/cm and temperature $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$ for 1H, 2H, 5H. The Cu+ ions drift rate of polyimide$(2.8{\leq}k{\leq}3.2)$ is considerably lower than thermal oxide. Also Cu+ drift rate of polyimide is similar to PECVD oxide. But, polyimide film is even more resistant to Cu drift diffusion and thermal effect than Thermal oxide, PECVD oxide: This results got a comparative reference. The important conclusion is that polyimide film is strongly dielectric material by thermal effect and Cu drift diffusion.

  • PDF

A study on the adjusting output energy of the CO2 laser controlled directly in AC power line (상용전원을 제어하는 CO2레이저의 출력 조절에 관한 연구)

  • Jeong, Jong-Jin;Lee, Im-Geun;Choi, Jin-Young;Park, Sung-Jin;Song, Gun-Ju;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2138-2139
    • /
    • 2005
  • We demonstrate a simple CO2 laser by controlling firing angle of a TRIAC switch in ac power line. The power supply for our laser system switches the voltage of the AC power line (60Hz) directly. The power supply does not need elements such as a rectifier bridge, energy-storage capacitors, or a current-limiting resistor in the discharge circuit. In order to control the laser output power, the pulse repetition rate is adjusted up to 60Hz and the firing angle of TRIAC gate is varied from 45 to 135. A ZCS(Zero Crossing Switch) circuit and a PIC one-chip microprocessor are used to control the gate signal of the TRIAC precisely. The maximum laser output of 40W is obtained at a total pressure of 18Torr, a pulse repetition rate of 60Hz, and a TRAIC gate firing angle of 90.

  • PDF

Effect of MIM and n-Well Capacitors on Programming Characteristics of EEPROM

  • Lee, Chan-Soo;Cui, Zhi-Yuan;Jin, Hai-Feng;Sung, Si-Woo;Lee, Hyung-Gyoo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • An electrically erasable programmable read-only memory (EEPROM) containing a stacked metal-insulator-metal (MIM) and n-well capacitor is proposed. It was fabricated using a 0.18 $\mu$m standard complementary metal-oxide semiconductor process. The depletion capacitance of the n-well region was effectively applied without sacrificing the cell-area and control gate coupling ratio. The device performed very similarly to the MIM capacitor cell regardless of the smaller cell area. This is attributed to the high control gate coupling ratio and capacitance. The erase speed of the proposed EEPROM was faster than that of the cell containing the MIM control gate.