• Title/Summary/Keyword: XorII

Search Result 4, Processing Time 0.021 seconds

Recombinant Expression and Purification of Functional XorII, a Restriction Endonuclease from Xanthomonas oryzae pv. oryzae

  • Hwang, Dong-Kyu;Cho, Jae-Yong;Chae, Young-Kee
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.175-178
    • /
    • 2007
  • An endonuclease from Xanthomonas oryzae pathovar oryzae KACC 10331, XorII, was recombinantly produced in Escherichia coli using a T7 system. XorII was purified using a combination of ion exchange and immobilized metal affinity chromatography (IMAC). An optimized washing protocol was carried out on an IMAC in order to obtain a high purity product. The final amount of purified XorII was approximately 2.5 mg/L of LB medium. The purified recombinant XorII was functional and showed the same cleavage pattern as PvuI. The enzyme activity tested the highest at $25^{\circ}C$ in 50 mM NaCl, 10 mM Tris-HCl, 10 mM $MgCl_{2}$, and 1 mM dithiothreitol at a pH of 7.9.

Efficient Bit-Parallel Shifted Polynomial Basis Multipliers for All Irreducible Trinomial (삼항 기약다항식을 위한 효율적인 Shifted Polynomial Basis 비트-병렬 곱셈기)

  • Chang, Nam-Su;Kim, Chang-Han;Hong, Seok-Hie;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.49-61
    • /
    • 2009
  • Finite Field multiplication operation is one of the most important operations in the finite field arithmetic. Recently, Fan and Dai introduced a Shifted Polynomial Basis(SPB) and construct a non-pipeline bit-parallel multiplier for $F_{2^n}$. In this paper, we propose a new bit-parallel shifted polynomial basis type I and type II multipliers for $F_{2^n}$ defined by an irreducible trinomial $x^{n}+x^{k}+1$. The proposed type I multiplier has more efficient the space and time complexity than the previous ones. And, proposed type II multiplier have a smaller space complexity than all previously SPB multiplier(include our type I multiplier). However, the time complexity of proposed type II is increased by 1 XOR time-delay in the worst case.

A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs (최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. The finite field $GF(2^m)$ with type I optimal normal basis(ONB) has the disadvantage not applicable to some cryptography since m is even. The finite field $GF(2^m)$ with type II ONB, however, such as $GF(2^{233})$ are applicable to ECDSA recommended by NIST. In this paper, we propose a bit-parallel multiplier over $GF(2^m)$ having a type II ONB, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{2m})$. The time and area complexity of the proposed multiplier is the same as or partially better than the best known type II ONB bit-parallel multiplier.

Efficient Optimal Normal Basis Multipliers Over Composite Fields (합성체상의 효율적인 최적정규기저 곱셈기)

  • Kwon, Yun Ki;Kwon, Soonhak;Kim, Chang Hoon;Kim, Hiecheol
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.1515-1518
    • /
    • 2009
  • 최적정규기저(Optimal Normal Basis)를 이용한 $GF(2^m)$상의 곱셈은 ECC(Elliptic Curve Cryptosystems: 타원곡선 암호시스템) 및 유한체 산술 연산의 하드웨어 구현에 적합하다는 것은 잘 알려져 있다. 본 논문에서는 최적정규기저의 하드웨어적 장점을 이용하여 합성체(Composit Field)상의 곱셈기를 제안하며, 기존에 제안된 합성체상의 곱셈기와 비교 및 분석한다. 제안된 곱셈기는 최적정규기저 타입 I, II의 대칭성과 가수의 중복성을 이용한 열벡터의 재배열에 따른 XOR 연산의 재사용으로 낮은 하드웨어 복잡도와 작은 지연시간을 가진다.