• Title/Summary/Keyword: Xe plasma

Search Result 143, Processing Time 0.026 seconds

Realization of High Luminous Efficacy PDP with Low Voltage Driving

  • Whang, Ki-Woong;Bae, Hyun-Sook;Jung, Hae-Yoon;Kwon, O-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.153-156
    • /
    • 2008
  • The use of high Xe content gas is a powerful method for improving the discharge efficacy in PDP, but the accompanying high driving voltage prevents it from being used aggressively. In this paper, we tried to find a method to lower the driving voltage under high Xe gas condition with a new protecting layer. The effective secondary electron emission caused by Xe ions can result in the low voltage driving in panels with high Xe content gas and more importantly high luminous efficacy which were confirmed with the computer simulation and panel experiment.

  • PDF

A Study on the 0-Dimensional Simulation of He+Ne+Xe Gas and the Discharge Characteristics in Plasma Display Panel (플라즈마 디스플레이 패널용 He+Ne+Xe 혼합가스에서 소량 Xe 함유에 대한 영 차원 수치해석과 방전특성연구)

  • Jeong, Hae-Yeong;Choe, Hun-Yeong;Kim, Geun-Su;Kim, Seong-Ik;Song, Bong-Sik;Park, Heon-Geon;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.436-442
    • /
    • 2002
  • Recently color AC PDP(plasma display panel) technology is rapidly improved. However, the luminous efficiency improvement is a key issue for making plasma display into a large-area flat display. In this paper, we suggest a new concentration of Xe in He-Ne-Xe gas mixture in order to achieve a high luminous efficiency of color AC PDPs. We calculated the densities of 25 species as a function of the time zero dimensional simulation using CVODE solver and we compared the results of zero dimensional simulation with a measurement of photo wave brightness and luminous efficiency, in order to find the optimum mixing condition of He-Ne-Xe gas in color plasma display panel. We obtained a high discharge speed under Xe mixing ratio of 1% by simulation and confirmed that through measuring photo wave.

Electronic Temperature and Density of Mixed Gases in Inductively Coupled Plasma Lighting System (Ne:Xe) (Inductively Coupled Plasma 광원 시스템의 Ne:Xe 혼합가스의 전자온도 및 전자밀도 특성)

  • Choi, Yong-Sung;Gu, Hal-Bon;Lee, Jin;Lim, Jong-Yeol;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.91-95
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe mixing gas lamp improvements firing voltage of Xe gas lamp. Purpose and subject of this study are understand, efficiency, ideal of Ne:Xe plasma which mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by langmuir probe data. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe.

  • PDF

Analysis on the improvement of Luminous Efficiency by Adding a small amount of Ar Gas in plasma display (PDP에서의 Ar Gas첨가시 효율 개선 경로에 관한 분석)

  • Min, Byeong-Guk;Park, Heon-Geon;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.483-488
    • /
    • 1999
  • The optimal mixing condition of four components gas(Ne,Xe,He,Ar) in PDPs was caculated by a numerical simulation method. The dominated reactions in which $Xe^*(^3P_1)$ is produced and decays were investigated in three components gas (Ne,Xe,He) and our new components gas (Ne,Xe,He,Ar). A peak point of $Xe^*$ density appears in the range of 0.1% to 2% of Ar mixture ratio. The results of simulation show that the direct exitation of Xe by electrons has the greatest influence on the inceasing $Xe^*$ density in both gas mixtures.

  • PDF

The Luminous Efficiency Improvement of Color AC Plasma Display Panel by adding Ar Gas (Ar Gas 첨가에 따른 칼라 플라즈마 디스플레이 패널의 효율 향상)

  • Shin, Jae-Hwa;Choi, Hoon-Young;Lee, Seok-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.132-136
    • /
    • 2002
  • In this study, we analyzed the luminous efficiencies of Ne-Xe-Ar and He-Ne-Xe-Ar mixing gas in compared with those of Ne-Xe and He-Ne-Xe mixing gas to improve luminous efficiency by adding a small amount of Ar gas. At the Xe 4%, the brightness of Ne-Xe and He-Ne-Xe mixing gas is higher than others. As the Xe % increases, power consumption decreases. Thus, in the Ne-Xe and He-Ne-Xe mixing gas of Xe 4%, we obtained maxium luminous efficiency. The Ar concentration is varied from 0.1% to 0.7% in this study. The luminous efficiency of the Ne-Xe(4%) mixing gas is improved to 1.16 and 1.13 lm/W by adding an Ar concentration of 0.4% and 0.5%, respectively. The luminous efficiency of the He-Ne-Xe(4%) (He : Ne = 7 : 3) mixing gas is considerably improved by adding an Ar concentration of above 0.3%. The maximum luminous efficiency of this mixing gas is 1.38 lm/W at the condition of adding an Ar concentration of 0.5%.

A Study on the Relationships Between the Electrooptical Characteristics and Working Gas Xe+Ne+He (AC PDP의 전기광학적 특성과 동작 Gas $Xe_x+Ne_y+He_{1-y)$의 상관관계에 관한 연구)

  • Park, Chung-Hoo;Yoo, Su-Bok;Lee, Hae-June;Lee, Ho-Jun;Kim, Jae-Sung;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1619-1625
    • /
    • 2007
  • The gas mixture ratio of PDP discharges plays a very important role in the discharge characteristics of a plasma display panel. The increase of Xe contents results in the increases of luminance and luminous efficiency while it also results in the increase of the breakdown voltage. The addition of He gas increases the brightness and the luminous efficiency. Especially, the luminance and the luminous efficiency have a maximum value when the partial pressure of He is about 10% of the total pressure for a standard plasma display panel with Xe fraction of $10\sim30%$.

The effect of sustain discharge gap variation in AC PDP with high Xe content

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.13-17
    • /
    • 2006
  • We investigated the effect of sustain electrode gap variation with high Xe content in an ac Plasma Display Panel through two-dimensional numerical simulation to understand the inherent high luminous efficiency mechanism. For the low Xe content, the optimal sustain electrode gap turned out to be about 200 ${\mu}m$, but with higher Xe content, the VUV generation efficiency increased as the electrode gap increases beyond 200 ${\mu}m$. We found that it is due to higher electron heating efficiency in the cathode sheath under the condition of long electrode gap and high Xe content.

  • PDF

Influence of Ne-Xe Gas Mixture Ratio on the Extreme Ultraviolet (EUV) Emission Measurement from the Coaxially Focused Plasma

  • Lee, Sung-Hee;Hong, Young-June;Choi, Duk-In;Uhm, Han-Sup;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.220-220
    • /
    • 2011
  • The Ne-Xe plasmas in dense plasma-focus device with coaxial electrodes were generated for extreme ultraviolet (EUV) lithography. The influence of gas mixture ratio, Ne-Xe (1, 10, 15, 20, 25, 30, 50%) mixture gas, on EUV emission measurement, EUV intensity and electron temperature in the coaxially focused plasma were investigated. An input voltage of 4.5 kV was applied to the capacitor bank of 1.53mF and the diode chamber was filled with Ne-Xe mixture gas at a prescribed pressure. The inner surface of the cylindrical cathode was lined by an acetal insulator. The anode was made of tin metal. The EUV emission signal of the wavelength in the range of 6~16 nm has been detected by a photo-detector (AXUV-100 Zr/C, IRD). The visible emission line was also detected by the composite-grating spectrometer of the working wavelength range of 200~1100 nm (HR 4000CG). The electron temperature is obtained by the optical emission spectroscopy (OES) and measured by the Boltzmann plot with the assumption of local thermodynamic equilibrium (LTE).

  • PDF

A Study on the Relationships between the Electrooptical Characteristics and Working Gas Xe+Ne+Kr (AC PDP의 전기 광학적 특성과 동작 가스 Xe+Ne+Kr의 구성비와의 상관관계에 관한 연구)

  • Park, Chung-Hoo;Yoo, Soo-Bok;Lee, Don-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-14
    • /
    • 2007
  • Recently, in order to improve the characteristics of operating voltage, brightness, discharge time lag, luminous efficacy of ac PDP, the PDP with high Xe partial pressure has been investigated. However, the serious problems in this case is to increase the operating voltage of ac PDP. In this study, in order to meet this problem the influences of kr gas in Ne-Xe-Kr ternary gas system is investigated for wide range of Xe partial pressure in terms of operating voltage, driving margin, luminance and luminous efficacy.

Measurement of excited Xe($1s_4$) and Xe($1S_5$) atoms by laser absorption spectroscopy in coplanar AC-PDP

  • Oh, P.Y.;Lee, J.H.;Moon, H.S.;Hong, J.W.;Jeon, W.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.515-517
    • /
    • 2004
  • The laser absorption spectroscopy has been used for measuresurement of the xenon atoms in the resonant $1S_4$ and metastable $1S_5$ states in coplanar AC PDP. For the purpose of improving VUV luminous efficiency and optimization of PDP cells, it is important to study behavior of excited Xe atoms in a micro-discharge cell of a coplanar AC-PDP. We measured the xenon excited density of $1S_5$ and $1S_4$ state under mixture gas of Ne-Xe(10%) with gas pressure of 350 Torr and sustaining gap distance of 150 um.

  • PDF