• Title/Summary/Keyword: Xanthomonas campestris pathovars

Search Result 3, Processing Time 0.021 seconds

Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars

  • Lee, Young-Hee;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.322-329
    • /
    • 2012
  • This study was conducted to investigate host and non-host disease resistances of kimchi cabbage plants to bacterial infection. Kimchi cabbage leaves responded differently to infections with a virulent strain of Xanthomonas campestris pv. campestris (Xcc) 8004 and two strains (85-10 and Bv5-4a.1) of non-host bacteria X. campestris pv. vesicatoria (Xcv). Non-host bacteria triggered a rapid tissue collapse of the leaves showing as brown coloration at the infected sites, highly increased ion leakage, lipid peroxidation and accumulation of UV-stimulated autofluorescence materials at the inoculated sites. During the observed interactions, bacterial proliferations within the leaf tissues were significantly different. Bacterial number of Xcc 8004 progressively increased within the inoculated leaf tissues over time, while growths of two non-host bacteria Xcv strains were distinctly limited. Expressions of pathogenesis-related genes, such as GST1, PR1, BGL2, VSP2, PR4 and LOX2, were differentially induced by host and non-host bacterial infections of X. campestris pathovars. These results indicated that rapid host cellular responses to the non-host bacterial infections may contribute to an array of defense reactions to the non-host bacterial invasion.

Development of PCR-Based Molecular Marker for Detection of Xanthomonas campestris pv. campestris Race 6, the Causative Agent of Black Rot of Brassicas

  • Afrin, Khandker Shazia;Rahim, Md Abdur;Rubel, Mehede Hassan;Park, Jong-In;Jung, Hee-Jeong;Kim, Hoy-Taek;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.418-427
    • /
    • 2020
  • Xanthomonas campestris pv. campestris (Xcc), the pathogen of black rot which is the most destructive disease of Brassica vegetables throughout the world. Here, we reported two novel sequence-characterized amplified region (SCAR) markers (i.e., XccR6-60 and XccR6-67) for the detection of Xcc race 6 via re-alignment of the complete genome sequences of Xcc races/strains/pathovars. The specificity of SCAR primer sets was verified by mean of PCR amplification using the genomic DNA template of Xcc races/strains/pathovars and two other plant infecting bacterial strains. The PCR result revealed that the XccR6-60 and XccR6-67 primer sets amplified 692-bp and 917-bp DNA fragments, respectively, specifically from race 6, while no visible amplification was detected in other samples. In addition, the SCAR primers were highly sensitive and can detect from a very low concentration of genomic DNA of Xcc race 6. However, the complete genome sequence of Xcc race 6 is not yet publicly available. Therefore, the cloning and sequencing of XccR6-60 and XccR6-67 fragments from race 6 provide more evidence of the specificity of these markers. These results indicated that the newly developed SCAR markers can successfully, effectively and rapidly detect Xcc race 6 from other Xcc races/strains/pathovars as well as other plant pathogenic bacteria. This is the first report for race-specific molecular markers for Xcc race 6.

Sensitive and Pathovar-Specific Detection of Xanthormonas campestris pv. glycines by DNA Hybridization and Polymerase Chain Reaction Analysis

  • Changsik Oh;Sunggi Heu;Park, Yong-Chul
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-61
    • /
    • 1999
  • Xanthomonas campestris pv. glycines causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecinA, against most xanthomonads including Xanthomonas campestris pv. vesicatoria. One of the 5 isolated DNA regions responsible for bacteriocin production, a 1.7 kb DNA region for the glycinecinA gene, was used as a probe to detect the presence of the homolog DNA in other bacterial strains. Among 55 bacterial strains tested, only X. campestris pv. glycines showed the positive signal with glycinecinA DNA. Two oligomers, heu2 and heu4, derived from a glycinecinA DNA were used to carry out the polymerase chain reaction (PCR) analysis with chromosomal DNA from 55 different bacterial strains including 24 different strains of X. campestris pv. glycines, 9 different pathovars of xanthomonads, and other 22 bacterial strains of different genus and species. By separation of the PCR products on agarose gel, a 0.86 kb DNA fragment was specifically detected when X. campestris pv. glycines was present in the amplification assay. The 0.86 kb fragment was not amplified when DNA from other bacteria was used for the assay. Southern analysis with glycinecinA DNA showed that the PCR signal was obtained with X. campestris pv. glycines isolates from various geographic regions and soybean cultivars. Therefore, the 1.7 kb DNA region for the glycinecinA gene can be used for the pathovar-specific probe for the DNA hybridization and the primers heu2 and heu4 can be used for the pathovar-specific primers for the PCR analysis to detect X. campestris pv. glycines.

  • PDF