References
- Abe, H., Narusaka, Y., Sasaki, I., Hatakeyama, K., Shin-I, S., Narusaka, M., Fukami-Kobayashi, K., Matsumoto, S. and Kobayashi, M. 2011. Development of full-length cDNAs from Chinese cabbage (Brassica rapa subsp. pekinensis) and identification of marker genes for defense response. DNA Res. 18:277-289. https://doi.org/10.1093/dnares/dsr018
- Bertini, L., Cascone, A., Tucci, M., D'Amore, R., Di Berardino, I., Buonocore V, Caporale, C. and Caruso, C. 2011. Molecular and functional analysis of new members of the wheat PR4 gene family. Biol. Chem. 387:1101-1111.
- Bretschneider, K. E., Gonella, M. P. and Robeson, D. J. 1989. A comparative light and electron microscopical study of compatible and incompatible interactions between Xanthomonas campestris pv. campestris and cabbage (Brassica oleracea). Physiol. Mol. Plant Pathol. 34:285-297. https://doi.org/10.1016/0885-5765(89)90026-X
- Conrads-Strauch, J., Dow, J. M., Milligan, D. E., Parra, R. and Daniels, M. J. 1990. Induction of hydrolytic enzymes in Brassica campestris in response to pathovars of Xanthomonas campestris. Plant Physiol. 93:238-243. https://doi.org/10.1104/pp.93.1.238
- Daurelio, L. D., Petrocelli, S., Blanck, F., Holuigue, L., Ottado, J. and Orellano, E. G. 2011. Transcriptome analysis reveals novel genes involved in nonhost responses to bacterial infection in tobacco. J. Plant Physiol. 168:382-391. https://doi.org/10.1016/j.jplph.2010.07.014
- Dixon, R. A., Harrison, M. J. and Lamb, C. J. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32:479-501. https://doi.org/10.1146/annurev.py.32.090194.002403
- Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1:316-323. https://doi.org/10.1016/1369-5266(88)80053-0
- Dow, J. M., Crossman, L., Findlay, K., He, Y. Q., Feng, J. X. and Tang, J. L. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100:10995-11000. https://doi.org/10.1073/pnas.1833360100
- Edwards, R., Dixon, D. P. and Walbot, V. 2000. Plant glutathione S-transferase: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5:193-198. https://doi.org/10.1016/S1360-1385(00)01601-0
- Essenberg, M., Pierce, M. L., Hamilton, B., Cover, E. C., Scholes, V. E. and Richardson, P. E. 1992. Development of fluorescent, hypersensitively necrotic cells containing phytoalexins adjacent to colonies of Xanthomonas campestris pv. malvacearum in cotton leaves. Physiol. Mol. Plant Pathol. 41:85-99. https://doi.org/10.1016/0885-5765(92)90002-D
-
Guevara-Morato, M. A., de Lacoba, M. G., Garcia-Luque, I. and Serra, M. T. 2010. Characterization of a pathogenesis-related protein (PR-4) induced in Capsicum chinense
$L^3$ plants with dual RNase and DNase activities. J. Exp. Bot. 61:3259-3271. https://doi.org/10.1093/jxb/erq148 - Hwang, I. S. and Hwang, B. K. 2010. The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol. 152:948-967. https://doi.org/10.1104/pp.109.147827
- Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides, C., Daniel, J. F., Marmey, P., Geiger, J. P. and Nicole, M. 2002. Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenase during hypersensitive reaction. Plant J. 32:1-12. https://doi.org/10.1046/j.1365-313X.2002.01393.x
- Jha, G., Rajeshwari, R. and Sonti, R. V. 2007. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant-Microbe Interact. 20:31-40. https://doi.org/10.1094/MPMI-20-0031
- Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., den Otter, F. C., van Loon, L. C. and Pieterse, C. M. J. 2008. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147:1358-1368. https://doi.org/10.1104/pp.108.121392
- Kpemoua, K., Boher, B., Nicole, M., Calatayud, P. and Geiger, J. P. 1996. Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Can. J. Microbiol. 42:1131-1143. https://doi.org/10.1139/m96-145
- Lema, M., Soengas, P., Velasco, P., Francisco, M. and Cartea, M. E. 2011. Identification of sources of resistance to Xanthomonas campestris pv. campestris in Brassica napus crops. Plant Dis. 95:292-297. https://doi.org/10.1094/PDIS-06-10-0428
- Li, X., Xia, B., Jiang, Y., Wu, Q., Wang, C., He, L., Peng, F. and Wang, R. 2010. A new pathogenesis-related protein, LrPR4, from Lycoris radiate, and its antifungal activity against Magnaporthe grisea. Mol. Biol. Rep. 37:995-1001. https://doi.org/10.1007/s11033-009-9783-0
- Lummerzheim, M., de Oliveira, D., Castresana, C., Miguens, F. C., Louzada, E., Roby, D., van Montagu, M. and Timmerman, B. 1993. Identification of compatible and incompatible interactions between Arabidopsis thaliana and Xanthomonas campestris pv. campestris and characterization of the hypersensitive response. Mol. Plant-Microbe Interact. 6:532-544. https://doi.org/10.1094/MPMI-6-532
- Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S. and Lin, H. 2011. Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathol. J. 27:53-58. https://doi.org/10.5423/PPJ.2011.27.1.053
- Mur, L. A. J., Kenton, P., Atzorn, R., Miersch, O. and Wasternack, C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140:249-262.
- Mysore, K. S. and Ryu, C. M. 2004. Nonhost resistance: how much do we know? Trends Plant Sci. 9:97-104. https://doi.org/10.1016/j.tplants.2003.12.005
- Newman, M. A., Conrads-Strauch, J., Scofield, G., Daniels, M. J. and Dow, J. M. 1994. Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity. Mol. Plant-Microbe Interact. 7:553-563. https://doi.org/10.1094/MPMI-7-0553
- Oh, S. K., Lee, S., Chung, E., Park, J. M., Yu, S. H., Ryu, C. M. and Choi, D. 2006. Insight into type I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta 223:1101-1107. https://doi.org/10.1007/s00425-006-0232-1
- Palva, T. K., Holmström, K.-O., Heino, P. and Palva, E. P. 1993. Induction of plant defense responses by exoenzymes of Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 6:190-196. https://doi.org/10.1094/MPMI-6-190
- Park, Y. S., Jeon, M. H., Lee, S. H., Moon, J. S., Cha, J. S., Kim, H. Y. and Cho, T. J. 2005. Activation of defense responses in Chinese cabbage by a nonhost pathogen, Pseudomonas syringae pv. tomato, J. Biochem. Mol. Biol. 38:748-754. https://doi.org/10.5483/BMBRep.2005.38.6.748
- Ramos, L. J. and Volin, R. B. 1987. Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria. Phytopathology 77:1311-1317. https://doi.org/10.1094/Phyto-77-1311
- Sanchez-Vallet, A., Ramos, B., Bednarek, P., López, G., Pioelewska-Bednarek, M., Schulze-Lefert, P. and Molina, A. 2010. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectospharella cucumerina fungi. Plant J. 63:115-127.
- Savchenko, T., Walley, J. W., Chehab, E. W., Xiao, Y., Kaspi, R., Pye, M. F., Mohamed, M. E., Lazarus, C. M., Bostock, R. M. and Dehesh, K. 2010. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193-3205. https://doi.org/10.1105/tpc.110.073858
- Simpson, R. B. and Johnson, L. J. 1990. Arabidopsis thaliana as a host for Xanthomonas campestris pv. campestris. Mol. Plant-Microbe Interact. 3:233-237. https://doi.org/10.1094/MPMI-3-233
- Stall, R. E., Jones, J. B. and Minsavage, G. V. 2009. Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 47:265-284. https://doi.org/10.1146/annurev-phyto-080508-081752
- Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C. and Grant, M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104:1075-1080. https://doi.org/10.1073/pnas.0605423104
- Vakili, N. G. 1967. Importance of wound in bacterial spot (Xanthomonas vesicatoria) of tomatoes in the field. Phytopathology 57:1099-1103.
- van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
- van Loon, L. C. and van Strien, E. A. 1999. The families of pathogenesis- related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97. https://doi.org/10.1006/pmpp.1999.0213
- Wang, N., Xiao, B. and Xiong, L. 2011. Identification of a cluster of PR4-like genes involved in stress responses in rice. J. Plant Physiol. 168:2212-2224. https://doi.org/10.1016/j.jplph.2011.07.013
- Yamamoto, Y., Kobayashi, Y. and Matsumoto, H. 2001. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125:199-208. https://doi.org/10.1104/pp.125.1.199
- Yun, B. W., Atkinson, H. A., Gaborit, C., Greenland, A., Read, N. D., Pallas, J. A. and Loake, G. J. 2003. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J. 34:768-777. https://doi.org/10.1046/j.1365-313X.2003.01773.x
- Zhang, C., Gutsche, A. T. and Shapiro, A. D. 2004. Feedback control of the Arabidopsis hypersensitive response. Mol. Plant-Microbe Interact. 17:357-365. https://doi.org/10.1094/MPMI.2004.17.4.357
Cited by
- Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases vol.64, pp.2, 2015, https://doi.org/10.1111/ppa.12262