• Title/Summary/Keyword: XanthineOxidase(XO)

Search Result 168, Processing Time 0.025 seconds

Mechanism of Lung Damage Induced by Cyclohexane in Rats (Cyclohexane에 의한 랫드의 폐손상 기전)

  • 전태원;윤종국
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.159-165
    • /
    • 2002
  • Recently, we reported (korean J. Biomed. Lab. Sci., 6(4): 245-251, 2000) that cyclohexane (l.56 g/kg of body wt., i.p.) administration led to lung injury in rats. However the detailed mechanism remain to be elucidated. This study was designed to clarify the mechanism of lung damage induced by cyclohexane in rats. First, lung damage was assessed by quantifying bronchoalveolar lavage fluid (BAL) protein content as well us by histopathological examination. Second, activities of serum xanthine oxidase (XO), pulmonary XO and oxygen free radical scavenging enzymes. XO tope conversion (O/D + O, %) ratio and content of reduced glutathione (GSH) were determined. In the histopathological findings, the vasodilation, local edema and hemorrhage were demonstrated in alveoli of lung. And vascular lumens filled with lipid droplets, increased macrophages in luminal margin and increased fibroblast-like interstitial cells in interstitial space were observed in electron micrographs. The introperitoneal treatment of cyclohexane dramatically increased BAL protein by 21-fold compared with control. Cyclohexane administration to rats led to a significant rise of serum and pulmonary XO activities and O/D + O ratio by 47%,30% and 24%, respectively, compared witれ control. Furthermore, activities of pulmonary oxygen free radical scavenging enzymes such as superoxide dismutase, glutathione peroxidase and glutathione S-transferase, and GSH content were not found to be statistically different between control and cyclohexane-treated rats. These results indicate that intraperitoneal injection of cyclohexane to rats may induce the lipid embolism in pulmonary blood vessel and lead to the hypoxia with the ensuing of oxygen free radical generation, and which may be responsible for the pulmonary injury.

Effects of Jingansikpung-tang and Gamijingansikpung-tang Water Extract on the Cultured Spinal Sensory Neurons (진간식풍탕 및 가미진간식풍탕 추출물이 배양 척수감각신경세포에 미치는 영향)

  • Seo Young Suk;Yun Sang Hak;Yeom Seung Ryong;Lee Su kyung;Shin Byung Cheul;Kwon Young Dal;Song Yung Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.374-379
    • /
    • 2003
  • To evaluate the mechanism of oxidative damage by Xanthine oxidase(XO) and hypoxanthine(HX)-induced oxygen radicals, XTT assay was carried out. Neurofilament EIA and PKC activity were measured to evaluate the protective effect of Jingansikpung-tang(JST) and Gamijingansikpung-tang(GJST) water extract on cultured spinal sensory neurons damaged by XO/HX, after the cultured mouse spinal sensory neurons were preincubated with various concentrations of JST and GJST water extract for 3 hours prior to exposure of XO/HX. The results were XO/HX decreased significantly, in proportion to concentration and exposed time, the survival rate of the cultured mouse sensory neurons on XTT assay. And in proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA, increase of PKC activity, but JST and GJST showed the neuroprotective effects against decrease of neurofilament and increase of PKC activity by XO/HX. From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and the herbs water extract, such as JST and GJST prevent the toxicity of XO/HX effectively.

Isoeugenol prevents N-methyl-D-aspartate(NMDA)-induced neurotoxicity and convulsion

  • Wie, Myung-bok
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.287-293
    • /
    • 1999
  • Isoeugenol, one of the phenylpropanoid derivatives has been known to inhibit the lipid peroxidation via scavenging effect on hydroxyl or superoxide radical production. We examined whether isoeugenol has a inhibitory effect against N-methyl-D-aspartate(NMDA)-, oxygen/glucose deprivation- and xanthine/xanthine oxidase(X/XO)-induced neurotoxicity or NMDA-induced $^{45}Ca^{+2}$ uptake elevation in primary mouse vertical cultures. We also evaluated whether isoeugenol exhibits inhibitory action on NMDA-induced convulsion in mice. Isoeugenol ($30{\sim}300{\mu}M$) attenuated NMDA- and X/XO-induced neurotoxicity by 11~85% and 83~92%, respectively. In the oxyge/glucose deprivation(60 min)-induced neurotoxicity, isoeugenol significantly(p<0.05) reduced by 32% at the maximal concentration. However, it failed to ameliorate NMDA-induced $^{45}Ca^{+2}$ uptake elevation. Isoeugenol(0.5g/kg, i.p.) delayed 6.5 times on the onset time of convulsion evoked by NMDA($0.1{\mu}g$) compared to that of control. These results suggest that the neuroprotective action of isoeugenol may be ascribed to the modulation of massive generation of reactive oxygen species(ROS) occurred during the ischemic or excitotoxic damage, not by directly affecting the NMDA receptor.

  • PDF

Effects of Radix Curcumae Aromaticae Extract in Rat Cardiac Endothelial Cells (울금 추출물이 배양 심장내피세포에 미치는 영향)

  • Kwon Kang Beom;Kim In Seob;Kim Hyun Gyu;Choi Ki Bang;Kim Yong Bok;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2003
  • To test the protective effect of Radix Curcumae Aromaticae (RCA) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen free radical, Neutral Red (NR), thiobarbituric acid reactive substances (TSARS), and DNA synthesis assay were used in the presence of RCA extract. The results of these experiments were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as decreases in viability and DNA synthesis, a increase in lipid peroxidation. Cardiac endothelial cells pretreated with RCA extract protected the increase of lipid peroxidation by XO/HX. Cardiac endothelial cells pretreated with RCA extract inhibited the decrease of DNA synthesis by XO/HX. These results show that XO/HX elicits toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that RCA extract is very effective in the prevention of XO/HX-induced toxicity.

Cloning of Xanthine Oxidase Gene from Mouse Liver cDNA Library

  • Lee, Chu-Hee;Lee, Sang-Il;Nam, Doo-Hyun;Heo, Geun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.261-261
    • /
    • 1994
  • Bovine milk xanthine oxidase (E.C.1.1.3.22, XO) purchased from Sigma Chemical Co. had the three protein fragments below 150 kDa on 7.5% SDS-PAGE, which did not show enzyme activity. To remove these fragments, the enzyme preparation was further purified through Sephadex G-200 column chromatography. Two peaks exhibiting enzymatic activity were separated very closely to the void volume, which were revealed as two different enzyme forms, dimeric and monomeric, confirmed by activity staining on native PAGE. Anti sera-against each of the two enzyme forms were raised by subcutaneous injection at multiple sites on the back of rabbits during 4 weeks. On the immunodiffusion test, it was found that both of the antisera of the two forms could react with each other, which implied that their epitopes were identical In the Western blot analysis of mouse liver cytosol fraction, it was found that rabbit anti-XO antibody bound well with the protein band of monomeric mouse liver XO of about 150kDa. Based on this result, mouse liver cDNA 1 ibrary was screened by in situ hybridizat ion wi th rabbi t anti -XO antibody as probe. Through the immunological screening, recombinant phages giving positive signal by the production of XO were selected and further purified. To validate these clones, purified phages were lysogenized in E. coli Y1089 and their lysates were analysed for enzyme activity and immunoreactivity, It was verified that lysates of the purified recombinant phage lysogens exhibited the enzymatic activity as well as bound wi th XO antibody, when induced by IPTG. The above results assert that selected recombinant phage carries mouse liver XO gene.

  • PDF

Protective Effects of Guaruhaebaekbaekju-tang Extract in XO/HX-treated Rat Myocardial Cells (XO/HX에 의하여 손상된 심근세포에 대한 과루해백백주탕 추출물의 방어효과)

  • Park Jun Su;Kwon Kang Beom;Moon Hyoung Chul;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.486-492
    • /
    • 2003
  • To certify the protective effect of herbal medicine on myocardial damage against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using by MTT assay, LDH activity and thiobarbituric acid reactive substances(TBARS) assay in the presence of Guaruhaebaekbaekju-tang(GHBT) extracts or single constituents of this prescription, Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a decrease in cell viability, an increase in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells, In the effect of GHBT extract, it showed the prevention from the XO/HX-induced cardiotoxicity such as the decrease of LDH activity and lipid peroxidation. In the protective effect of Fructus Trichosanthis (FT) and Bulbus Allii Macrostemi (BAM), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rats, and it suggests that GHBT, FT and BAM extracts are positively effective in the blocking XO/HX-induced cardiotoxicity.

Effects of Cheongsimyeonja-tang water extract on the Cultured Primary Hippocampal Cell Damaged by XO/HX (청심연자탕(淸心蓮子湯) 수추출물(水抽出物)이 XO/HX에 의해 손상(損傷)된 배양(培養) 해마신경세포(海馬神經細胞)에 미치는 영향(影響))

  • Lee, Jae-Heung;Kim, Hyong-Soon;Bae, Young-Chun;Kim, Kyung-Yo;Won, Kyoung-Sock;Hwang, Seung-Yeon
    • Journal of Sasang Constitutional Medicine
    • /
    • v.14 no.3
    • /
    • pp.132-145
    • /
    • 2002
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as Cheongsimyeonjatang(CYT) on the treatment of the toxic effects. For this purpose, experiments with the cultured hippocampal cells from new born mice were done. The results of these experiments were as follows. 1. XO/HX, a oxygen radical-generating system, decreased the survival rates of the cultured cells on MTT assay and NR assay, protein synthesis, and amounts of neurofilaments. 2. CYT have the efficacy of increasing protein synthesis decreased by XO/HX. 3. CYT have the efficacy. of increasing the amount of neurofilaments decreased by XO/HX. From the above results, it is suggested that Cheongsimyeonjatang (CYT) have marked efficacy as a protection for the damages caused by the XO/HX-mediated oxidative stress.

  • PDF

돼지 액상정액에서 $Barodon^{(R)}$의 항산화 효과에 관한 연구

  • 김창근;방명걸;정영채;류재원;장유민;이주형;박민영;최수일
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.79-79
    • /
    • 2003
  • 세포에 대한 산화스트레스는 세포의 대사와 기능저하의 원인이 되고 있으며 이를 줄이기 위한 항산화 물질의 첨가가 연구되고 있다. 본 연구는 비특이면역증가제이며 다목적 고기능성 알칼리용액 조성물인 Barodon의 항산화 효과를 돼지정자를 이용하여 조사하여, 돼지 액상정액의 보존성 향상을 위한 Barodon의 이용성을 알기 위하여 시도하였다. 실험구로서 무첨가구와 활성산소 인위발생구(xanthine+xanthine oxidase, X-XO), X-XO구에 superoxide dismutase, cataiase, Barodon(2종류)의 단독처리구 및 X-XO구에 이들 항산산제의 복합처리구로 나누어 항산화제 처리효과에 따른 정자운동특성을 CASA로 분석하였다. 또한 돼지 액상정액에서 Barodon의 항산화 효과를 무첨가구, catalase구 및 Barodon구로 나누어 정액의 보존기간별 정액성상 변화(정자활력, 생존성, 첨체이상)를 조사하였다.

  • PDF

Effects of Gamdu-tang Extract in Rat Cardiac Endothelial Cells (심장내피세포의 DNA 합성량에 미치는 감두탕의 영향(I))

  • Kwon Kang Beom;Kim Woo Kyung;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.352-355
    • /
    • 2003
  • To investigate the protective effect of Gamdu-tang(GDT) and its constituents. Radix Glycyrrhizae(RG) and Semen Glycine(SG) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen free radical, Neutral Red (NR) and DNA synthesis assay were used. The results were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as decreases in viability and DNA synthesis. Cardiac endothelial cells pretreated with GDT extracts were not showed the decrease of DNA synthesis by XO/HX, These results show that XO/HX elicits toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that GDT extract is very effective in the prevention of XO/HX-induced toxicity.

Protective Effects of Jisilhaebaekgyeji-tang and Constituents Extract on Cultured Rat Myocardial Cell treated by XO/HX (XO/HX에 의해 손상된 배양 심근세포에 대한 지실해백계지탕과 구성약물 추출물의 방어효과)

  • Jang Seung Ho;Kwon Kang Beom;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.952-957
    • /
    • 2003
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using LDH activity and TBARS assay in the presence of Jisilhaebaekgyejitang(JHGT) extracts or single constituents of this prescription, In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a cell damage such as increases in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells. In the effect of JHGT extract and its single constituents, which are Fructus Ponciri Seu Aurantii Immaturus (FPSAI), Cortex Magnoliae Officinalis (CMO), Bulbus Allii Macrostemi (BAM), Ramulus Cinnamomi (RC) and Fructus Trichosanthis (FT), they showed the prevention from the XO/HX-induced cardiotoxicity by the decrease of LDH activity and lipid peroxidation. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that JHGT, FPSAI, PT, CMO, BAM, RC and FT extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.