• Title/Summary/Keyword: XY 테이블

Search Result 14, Processing Time 0.02 seconds

Parallel $XY{\theta}$ Table Design and Implementation for Precision Positioning (고정밀 위치 제어용 병렬 $XY{\theta}$ 테이블 설계 및 구현)

  • Han, Joo-Hun;Oh, Choon-Suk;Ryu, Young-Kee
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.62-70
    • /
    • 1999
  • To achieve precision positioning, working area is required within $5mm{\times}5mm$ and positioning error is allowed within minimum ${\pm}4{\mu}m$. As a general three-layered table takes working range from several centimeters and a few tens of centimeters, it has disadvantages compared with precision positioning table, such as larger working range and rough accuracy. In this paper we design and implement a parallel $XY{\theta}$ table with three linear actuators, where one is on the horizontal direction and the others on the vertical direction on behalf of a degree of $XY{\theta}$ freedom. Finally, the experimental results of precision positioning is showed by using new image processing algorithms with two CCD cameras.

  • PDF

Deadzone compensation of a XY table using fuzzy logic (XY 테이블의 퍼지 데드존 보상)

  • 장준오
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.17-28
    • /
    • 2004
  • A deadzone compensator is designed for a XY positioning table using fuzzy logic. The classification property of fuzzy logic systems makes them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a XY positioning table to show its efficacy.

Neuro-controller for a XY positioning table (XY 테이블의 신경망제어)

  • Jang, Jun Oh
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.375-382
    • /
    • 2004
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neuro-controller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

A High Speed md High Precision Position Control of a XY Table using a VSC (가변구조 제어기를 이용한 XY 테이블의 고속 고정도 위치제어)

  • 이성훈;김가규;최봉열
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.813-816
    • /
    • 1999
  • In this paper is Proposed a VSC(variable structure controller) for a high-speed and high-precision position control of a XY Table, which is based on the PI type reaching mode. Also the comparative study between the proposed method and the conventional PID controller is presented as well. Designed and tuned under repeated experiments, the proposed method showed a better reasonable performance than PID controller in the aspect of tracking error.

  • PDF

Position Tracking Control on the XY Ball-screw Drive System with the Nonlinear Dynamic Friction (비선형 동적마찰을 갖는 XY볼-스크류 구동계에 대한 위치 추종제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.51-61
    • /
    • 2002
  • A tracking control scheme on the XY ball-screw drive system in the presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the Lund-Grenoble friction model to compensate effects of friction. The conventional VSC method that often has been used as a non-model-based friction controller has poor tracking performance in high-precision position tracking application since it cannot compensate the friction effect below a certain precision level completely. Thus to improve the precise position tracking performance, we propose the integral type VSC method combined with the friction-model-based observer. Then this control scheme has the high precise tracking performance compared with the non-model-baked VSC method and the PID control method with a similar observer. This fact is shown through the experiment on the XY ball-screw drive system with the nonlinear dynamic friction.

Development of the Fishbot Using Haptic Technology (햅틱기술을 이용한 피시봇 개발)

  • Lee, Young-Dae;Kang, Jeong-Jin;Moon, Chan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • In this paper, a haptic fishing robot, Fishbot, for a Virtual Fishing System is presented. Fishbot is 3DOF robot and it consists of a XY table and a wheel motor. To simulate the motion of fish, XY table is controlled by position servo drivers with variable torque constraint, and wheel axis is controlled by torque servo driver. Finally, Fishibot detects the end point of fishing pole with cameras to recognize the pose of user, and it can interface with a Virtual Reality System.

Design of Position Controller for XY table using Fuzzy Logic (퍼지논리에 의한 XY 테이블의 위치제어기 설계)

  • Yum, Hyung-Sun;Shin, Ki-Sang;Shin, Doo-Jin;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.414-416
    • /
    • 1998
  • One significant error in XY table is due to friction and disturbance. However, the characteristics of this friction is not easy to predict and analyze because of its nonlinearity. Therefore, it is difficult for conventional controller to compensate it effectively. In order to solve this problem, this paper presents a position controller based on fuzzy logic controller(FLC) that is suitable for system with unknown and unmodelled dynamics. The performance of the proposed controller are demonstrated by simulation results.

  • PDF

Precise Control for Servo Systems Using Sliding Mode Observer and Controller (슬라이딩 모드 관측기와 제어기를 이용한 서보시스템의 정밀제어)

  • Han, Seong-Ik;Gong, Jun-Hui;Sin, Dae-Wang;Kim, Jong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.154-162
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to model. This paper is concerned with the compensation for friction using the variable structure system approach as nonmodel based method. The problem of chattering in the sliding mode controller is suppressed by the implementation of the boundary layer concept. And the estimation for friction using sliding mode observer makes the upper bound of matched uncertainty reduced. Accordingly, the effect of chattering can be more suppressed. And the sliding surface is constructed by adding an integral component to the switching function that is made by using error dynamics. This sliding surface guarantees the good tracking performance. Experimental results for a XY table system show that the proposed method has a good performance especially in the low velocity.

The Laser Calibration Based On Triangulation Method (삼각법을 기반으로 한 레이저 캘리브레이션)

  • 주기세
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.859-865
    • /
    • 1999
  • Many sensors such as a laser, and CCD camera to obtain 3D information have been used, but most of algorithms for laser calibration are inefficient since a huge memory and experiment data are required. This method saves a memory and an experimental data since the 3D information are obtained simply triangulation method. In this paper, the calibration algorithm of a slit km laser based on triangulation method is introduced to calculate 3D information in the real world. The laser beam orthogonally mounted on the XY table is projected on the floor. A CCD camera observes the intersection plane of a light and an object plane. The 3D information is calculated using observed and calibration data.

  • PDF

The Slit Beam Laser Calibration Method Based On Triangulation (삼각법을 이용한 슬릿 빔 레이저 캘리브레이션)

  • 주기세
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.168-173
    • /
    • 1999
  • Many sensors such as a laser, CCD camera to obtain 3D information have been used, but most of calibration algorithms are inefficient since a huge memory and an experiment data for laser calibration are required. In this paper, the calibration algorithm of a slit beam laser based on triangulation method is introduced to calculate 3D information in the real world. The laser beam orthogonally mounted on the XY table is projected on the floor. A Cm camera observes the intersection plane of a light and an object plane. The 3D information is calculated using observed and calibration data. This method saves a memory and an experimental data since the 3D information are obtained simply triangulation method.

  • PDF