Deadzone compensation of a XY table using fuzzy logic

XY 테이블의 퍼지 데드존 보상

  • 장준오 (위덕대학교 컴퓨터멀티미디어공학부)
  • Published : 2004.03.01

Abstract

A deadzone compensator is designed for a XY positioning table using fuzzy logic. The classification property of fuzzy logic systems makes them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a XY positioning table to show its efficacy.

퍼지논리를 이용한 XY 테이블의 데드존 보상기법을 제안한다. 퍼지논리 함수의 분류특성은 다양한 영역을 가진 데드존에 의해 유발되는 오차를 제거하기 위한 보상기 설계를 가능케 한다. 데드존 보상이 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 퍼지논리 파라미터 동조알고리듬과 안정도 증명을 제시한다. 퍼지논리 데드존 보상기를 위치 테이블에 실험함으로써 데드존의 해로운 영향을 줄이는 효과를 보여준다.

Keywords

References

  1. W. Li and X. Cheng, 'Adaptive high-precision control of positioning tables-Theory and experiment,' IEEE Trans. Contr. Syst. Technol., vol. 2, pp. 265-270, 1994 https://doi.org/10.1109/87.317983
  2. H. S. Lee and M. Tomizuka, 'Robust moti on controller design for high-accuracy positioning systems,' IEEE Trans Ind. Electron., vol. 43, no. 1, pp. 48-55, 1996 https://doi.org/10.1109/41.481407
  3. S. Goto, M. Nakamura, and N. Kyura, 'Accurate contour control of mechatronic servo systems using gaussian networks,' IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 469-476, 1996 https://doi.org/10.1109/41.510638
  4. M. Mahfouf, C. H. Kee, M. F. Abbod, and D. A. Linkens, 'Fuzzy logic based anti-sway control design for overhead cranes,' Neural Computing & Applications, vol. 9, pp. 38-43, 2000 https://doi.org/10.1007/s005210070033
  5. J. O. Jang, 'Implementation of indirect neuro-control for a nonlinear two robot MIMO system,' Contr. Eng. Pract., vol. 9, no. 1, pp. 89-95, 2001 https://doi.org/10.1016/S0967-0661(00)00100-3
  6. C. A. Desoer and S. M. Shahruz, 'Stability of dithered nonlinear systems with backlash or hysteresis,' Int. J. Contro, vol. 43, no. 4, pp. 1045-1060, 1986 https://doi.org/10.1080/00207178608933522
  7. V. I. Utkin, 'Sliding mode control design principles and applications to electric drives,' IEEE Trans. Ind. Electron., vol. 40, pp. 23-36, 1993 https://doi.org/10.1109/41.184818
  8. G. Tao and P. V. Kokotovi'c, 'Adaptive control of plants with unknown dead-zones,' in Proc. American Control Conf., Chicago, IL, pp. 2710-2714, 1992
  9. G. Tao and P. V. Kokotovi'c, 'Disc rete-time adaptive control of systems with unknown deadzones,' Int. J. Contr., vol. 61, no. 1, pp. 1-17, 1995 https://doi.org/10.1080/00207179508921889
  10. D. A. Recker, P. V. Kokotovi'c, D. Rhode, and J. Winkelman, 'Adaptive nonlinear control of systems containing a deadzone,' in Proc. IEEE Conf. Decision and Control, Brighton, UK, pp. 2111-2115, 1991 https://doi.org/10.1109/CDC.1991.261510
  11. M. Tian and G. Tao, 'Adaptive control of a class of nonlinear systems with unknown deadzones,' in Proc. IFAC World Congress, San Francisco, CA, 1996, pp. 209-214
  12. X. S. Wang, H. Hong and C. Y. Su, 'Model reference adaptive control of continuous time systems with an unknown input deadzone,' IEE Proceedings, Contol theory and Applications, vol. 150, no. 2, pp. 261-266, May 2003 https://doi.org/10.1049/ip-cta:20030398
  13. M. Letizia Corradini and G. Orlando, 'Robust stabilization of nonlinear uncertain plants with backlash or deadzone in the actuator,' IEEE Trans. on Control systems technology, vol. 10, no. 1, pp. 158-166, Jan. 2002 https://doi.org/10.1109/87.974349
  14. M. Jamshidi, N. Vadiee, and T. J. Ross, Fuzzy Logic and Control, Englewood Cliffs, NJ: PrenticeHall, 1993
  15. J. H. Kim, J. H. Park, S. W. Lee, E. K. P. Cheng,'A two layered fuzzy logic controller for systems with deadzones,' IEEE Trans. Ind. Electron., vol. 41, pp. 155-162, apr. 1994 https://doi.org/10.1109/41.293875
  16. F. L. Lewis, W. K. Tim, L. Z. Wang, and Z. X. Li, 'Deadzone compensation in motion control systems using adaptive fuzzy logic contorl,' IEEE Trans. Contr. Syst. Technol., vol. 7, no. 6, pp. 731 742, Nov. 1999 https://doi.org/10.1109/87.799674
  17. S. Y. Oh and D. J. Park, 'Design of new adaptive fuzzy logic controller for nonlinear plants with unknown or time-varying dead zones,' IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 481-492, Nov. 1998 https://doi.org/10.1109/91.728437
  18. B. Kosko, 'Fuzzy systems as universal approximator,' IEEE Trans. Comput., vol. 43, pp. 1-4, Oct. 1994 https://doi.org/10.1109/12.250604
  19. L. X. Wang and J. M. Mendel, 'Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,' IEEE Trans. Neural Networks, vol. 3, pp. 807-814, Sept. 1992 https://doi.org/10.1109/72.159070
  20. L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994
  21. H. Ying, 'Sufficient conditions on general fuzzy systems as function approximators,' Automatica, vol. 30, no. 3, pp. 521-525, 1994 https://doi.org/10.1016/0005-1098(94)90130-9
  22. X. J. Zeng and M. G. Singh, 'Approximation theory of fuzzy systems-MIMO case,' IEEE Trans. Fuzzy Syst., vol. 3, pp. 219-235, May 1995 https://doi.org/10.1109/91.388175
  23. J. O .Jang and G. J. Jeon, 'A parallel neuro-controller for DC motors containing nonlinear friction,' Neurocomputing, vol. 30, no. 1-4, pp. 233-248, 2000 https://doi.org/10.1016/S0925-2312(99)00128-9
  24. J. O. Jang, 'A deadzone compensator of a DC motor system using fuzzy logic control,' IEEE Trans. Syst., Man, Cybernet. C, vol. 31, no. 1, pp. 42-48, 2001 https://doi.org/10.1109/5326.923267
  25. J. O. Jang, 'Neuro-controller for a XY positioning table,' Proc. ICCAS, pp. 581-586, Oct. 2003