• Title/Summary/Keyword: XRD and FT-IR

Search Result 581, Processing Time 0.023 seconds

Importance of Hardness and Elasticity of Polymer Powders on Growth of Ceramic-based Polymer Composite Thick Films Using Aerosol Deposition Method (Aerosol Deposition Method를 이용한 세라믹 기반 폴리머 복합체 후막의 성장에 있어 폴리머 파우더의 경도와 탄성의 중요성)

  • Na, Hyun-Jun;Yoon, Young-Joon;Kim, Jong-Hee;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.345-345
    • /
    • 2008
  • 최근 전자 소자의 고주파화, 소형화에 대한 요구가 증대 되면서 많은 소자들을 하나의 시스템에 3차원적으로 실장시키는 SOP (System-on-Package)가 새로운 대안으로 떠오르고 있으며 SOP를 실현하기 위해서는 집적기판에 대한 저온화 공정 기술이 절실히 필요한 실정이다. 현재 집적기판에 사용되는 재료로서 세라믹이 널리 알려져 있지만 세라믹은 취성이 있으며 $1000^{\circ}C$ 이상의 고온화 공정 프로세스를 필요로 하는 근본적인 약점이 있다. 이에 본 연구에서는 상온에서 고속으로 치밀한 성막을 가능케 하는 Aerosol Deposition Method (ADM)를 이용하여 최초로 세라믹-폴리머 복합체 후막을 성공적으로 제작하였다. XRD와 FT-IR 분석 결과 $Al_2O_3$-PMMA, $Al_2O_3$-PI 혼합물을 출발 파우더로 사용하여 제조한 후막이 세라믹-폴리머 복합체임을 확인할 수 있었다. 또한 SEM 분석결과 $Al_2O_3$-PMMA 복합체와 $Al_2O_3$-PI 복합체의 표면 양상이 매우 다르다는 점을 확인하였으며 $Al_2O_3$-PMMA 복합체의 성막률이 $Al_2O_3$-PI 복합체의 성막률에 비해 매우 낮음을 확인하였다. 이러한 현상들은 폴리머 파우더들의 경도와 탄성 차이 때문인 것으로 사료되어 이를 증명하기 위한 실험을 실시하였다. 결국 PMMA 막과 PI 막에 대한경도측정결과와 PMMA 파우더와 PI 파우더의 유성 볼밀링 전후에 대한 SEM 이미지를 통해 PMMA 파우더가 PI 파우더에 비해 경도가 낮으며 반면 탄성이 높다는 것을 간접적으로 확인할 수 있었다. 이와 같은 분석을 통하여 ADM을 이용한 세라믹-폴리머 복합체 후막의 제조에 있어 폴리머 파우더의 경도와 탄성이 매우 큰 영향을 미친다는 것을 알 수 있었다. 본 연구에서는 세라믹-폴리머 복합체 후막을 성공적으로 제조하기 위해서 폴리머 파우더의 적절한 선택이 중요함을 알 수 있었으며 ADM을 이용한 세라믹-폴리머 복합체 후막의 제조에 대한 가이드 라인을 제시할 수 있을 것으로 기대된다.

  • PDF

A Novel Acid-Base Catalyzed Sol-Gel Synthesis of Highly Active Mesoporous TiO2 Photocatalysts

  • Khan, Romana;Kim, Sun-Woo;Kim, Tae-Jeong;Lee, Hyo-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1951-1957
    • /
    • 2007
  • A new synthetic strategy based on the acid-base catalyzed sol-gel method was developed for the preparation of a series of mesoporous TiO2 nanoparticles. A key feature of the method involves a gradual change in pH (0.8- 9) during the sol-gel transition, which guarantees easy introduction of mesoporosity without relying on the well-established sonochemical or template approach. In addition, this method leads to the exclusive formation of the anatase phase stable enough to the calcination temperature up to 600 oC. The physicochemical properties of the particles in the series were characterized by various spectroscopic and analytical techniques such as wide-angle XRD, SAXRD, BET surface area, FE-SEM, TEM, FT-IR, TGA, and XPS. The photocatalytic efficiency of these materials was investigated for the oxidation of toluene under UV-irradiation. All but T-ad in the series exhibited high photocatalytic activity pushing the reaction into completion within 3 h. The reaction followed the first order kinetics, and the rate reaches as high as 3.9 × 10?2/min which exceeds the one with the commercially available Degussa P-25 by a factor of 3.2. When comparison is made among the catalysts, the reactivity increases with increase in the calcination temperature which in turn increases the crystallinity of the anatase phase, thus revealing the following rate orders: T-3 < T-4 < T-5 < T-6.

Characterization of Mineralogical Changes of Chrysotile and its Thermal Decomposition by Heat Treatment (열처리에 따른 백석면의 광물학적 특성 변화와 열분해 과정 연구)

  • Jeong, Hyeonyi;Moon, Wonjin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • Chrysotile is a 1:1 sheet silicate mineral belonging to serpentine group. It has been highlighted studies because of uses, shapes and structural characteristics of the fibrous chrysotile. However, it was designated as Class 1 carcinogen, so high attentions were being placed on detoxification studies of chrysotile. The objectives of this study were to investigate changes of mineralogical characteristics of chrysotile and to suggest detoxification mechanism of chrysotile by thermal decomposition. Samples for this study were obtained from LAB Chrysotile mine in Canada. The samples were heated in air in the range of 600 to $1,300^{\circ}C$. Changes of mineralogical characteristics such as crystal structure, shape, and chemical composition of the chrysotile fibers were examined by TG-DTA, XRD, FT-IR, TEM-EDS and SEM-EDS analyses. As a result of thermal decomposition, the fibrous chrysotile having hollow tube structure was dehydroxylated at $600-650^{\circ}C$ and transformed to disordered chrysotile by removal of OH at the octahedral sheet (MgOH) (Dehydroxylation 1). Upon increasing temperature, it was transformed to forsterite ($Mg_2SiO_4$) at $820^{\circ}C$ by rearrangement of Mg, Si and O (Dehydroxylation 2). In addition, crystal structure of forsterite had begun to transform at $800^{\circ}C$, and gradually grown 3-dimensionally to enstatite ($MgSiO_3$) by recrystallization after the heating above $1,100^{\circ}C$. And then finally transformed to spherical minerals. This study showed chrysotile structure was collapsed about $600-700^{\circ}C$ by dehydroxylation. And then the fibrous chrysotile was transformed to forsterite and enstatite, as non-hazardous minerals. Therefore, this study indicates heat treatment can be used to detoxification of chrysotile.

Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil (비소 오염토양의 안정화를 위한 나노 Fe° 담지 바이오차 적용 연구)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Joo, Wan-Ho;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.350-362
    • /
    • 2020
  • In this study, nano Fe°-impregnated biochar (INPBC) was prepared using pruning residues and one-pot synthetic method and evaluated its performance as an amendment agent for the stabilization of arsenic-contaminated soil. For the preparation of INPBC, the mixture of pruning residue and Fe (III) solution was heated to 220℃ for 3hr in a teflon-sealed autoclave followed by calcination at 600℃ under N2 atmosphere for 1hr. As-prepared INPBC was characterized using FT-IR, XRD, BET, SEM. For the stabilization test of as-prepared INPBC, As-contaminated soils (Soil-E and Soil-S) sampled from agricultural sites located respectively near E-abandoned mine and S-abandoned mine in South Korea were mixed with different of dosage of INPBC and cultivated for 4 weeks. After treatment, TCLP and SPLP tests were conducted to determine the stabilization efficiency of As in soil and showed that the stabilization efficiency was increased with increasing the INPBC dosage and the concentration of As in SPLP extractant of Soil-E was lower than the drinking water standard level of Ministry of Environment of South Korea. The sequential fractionation of As in the stabilized soils indicated that the fractions of As in the 1st and 2nd stages that correspond liable and known as bioavailable fraction were decreased and the fractions of As in 3rd and 4th stages that correspond relatively non-liable fraction were increased. Such a stabilization of As shows that the abundant nano Fe° on the surface of INPBC mixed with As-contaminated soils played the co-precipitation of As leaching from soil by surface complexation with iron. The results of this study may imply that INPBC as a promising amendments for the stabilization of As-contaminated soil play an important role.

Effects of pt catalyst on the sensitivity of ZnO nanowire gas sensor (ZnO 나노선 기반의 가스센서에서 Pt 촉매가 감도에 미치는 영향)

  • Jung, Tae-Hwan;Kwon, Soon-Il;Park, Seung-Beom;Lee, Seok-Jin;Yang, Kea-Joon;Lim, Dong-Gun;Park, Jae-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.281-281
    • /
    • 2008
  • 최근 높은 비표면적, 우수한 결정성, 나노스케일의 크기 등 다양한 물리 화학적 특성을 지닌 1차원 나노구조체를 이용한 가스센서 연구가 활발히 진행되고 있다. 가스센서는 네트워크 된 나노선들 이용하여 벌크, 박막 보다 극대화된 비표면적으로 가스 감도와 반응 속도를 향상시킬 수 있었다. 촉매 첨가를 위해 Acetylacetone 용액 7 ml에 10 mM이 되도록 Pt 분말을 첨가하여 촉매용액을 제조하였다. 마이크로피펫을 이용하여 미량을 센서의 감응체 부문에 뿌려 대기 중에서 건조한 후 센서의 감도를 측정하였다. 측정은 $250^{\circ}C$에서 일산화탄소 가스 500 ppm의 가스농도로 촉정하였을 때 촉매가 첨가된 센서가 70% 이상의 개선된 감도를 나타내었다. 이는 나노선에 분산된 촉매에 주입되는 가스가 흡착되고 다시 표면의 산소와 반응하여 전기전도도를 변화시키는 것으로 보인다. 첨가된 촉매에 대한 영향을 분석하기 위해 AES, XRD, FT-IR, TEM 등의 분석을 실시하였다.

  • PDF

XRD study of the layered structure compounds [Zn${(H_2O)}_6$] (${(C_{n}H_{2n+1}SO_3)}_2$ (층상구조인 [Zn${(H_2O)}_6$ (${(C_{n}H_{2n+1}SO_3)}_2$ 화합물에 대한 X-선 회절 연구)

  • 박용준;박양순;이종규;박성훈;전태현;허영덕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.318-323
    • /
    • 2000
  • The intercalated compounds of alkylsulfonates into hydrated zinc were synthesized. From the high temperature powder X-ray diffraction (HTXRD), FT-IR, and molecular size, the temperature dependence of orientation for the intercalated alkylsulfonates were determined. In the temperatures range 1, alkylsulfonates were intercalated into hexa aqua zinc layer with the bilayer structure of $32.9^{\circ}$angle for ${Zn(H_2O_4]^{2+}[C_nH_{2n+1}SO_3]_2\;^-$. In the temperatures range 2, alkylsulfonates were intercalated into tetra aqua zinc layer with the bilayer structure of $55.2^{\circ}$angle for ${Zn(C_nH_{2n+1}SO_3)_2$. In the temperatures range 3, alkylsulfonates were directly bonded to zinc ion with the bilayer structure of $76.5^{\circ}$angle for ${Zn(C_nH_{2n+1}SO_3)_2$.

  • PDF

Identification of Fibers of Samsebul (Triple Buddha Statues) at Bonghwangsa in Andong (안동 봉황사 삼세불 제작에 사용된 섬유의 동정)

  • Cho, Kyoung-Sil;Baek, Young-Mee
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • Samsebul, the altar portrait behind the statue of Buddha in the main building of Bonghwang temple in Andong, has been designated as Tangible Cultural Property No. 406. These alter portraits have significance as the standard of the research of Samsebul in Joseon period. In this study, fibre of the ground textile is identified using microscopic examination, solubility test, ATR-FT-IR, SEM, XRD. Two samples from Yaksabul(A, B), one sample from Seokgabul(C), and one sample from Amitabul(D), which were collected during the conservation process, were prepared for this study. In previous record, above samples were documented as hemp. Due to severe deterioration and accumulated dust layers on these samples, it was hard to recognize them with naked eyes, but through this study, we could identify that all samples except one from Yaksabul(A) are silk.

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Phosphorus Modified Co/Al2O3 Fischer-Tropsch Catalyst for a Slurry Phase CSTR with Enhanced Hydrothermal and Mechanical Stability (수열특성 및 기계적 안정성의 개선으로 슬러리상 CSTR에 적합한 P 첨가 알루미나 기반의 Fischer-Tropsch 합성용 코발트 촉매)

  • Jung, Gyu-In;Ha, Kyoung-Su;Park, Seon-Ju;Kim, Du-Eil;Woo, Min-Hee;Jun, Ki-Won;Bae, Jong-Wook;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • Phosphorus was incorporated into Co/$Al_2O_3$ catalyst for FTS by impregnating an acidic precursor, phosphoric acid, in ${\gamma}-Al_2O_3$ support to improve the mechanical strength, the hydrothermal stability of the catalyst particle, and the catalytic performance as well. Surface characterization techniques such as FT-IR revealed that $AlPO_4$ phase was generated on the surface of the P-modified catalyst. The addition of phosphorus was found to alleviate the interaction between cobalt and alumina surface, and to increase reducibility of catalyst. The catalytic activity such as $C_{5+}$ productivity and turnover frequency (TOF) was calculated to evaluate catalytic performance. The influence of calcination temperature of the $Al_2O_3$ containing 2 wt.% P on the catalytic performance was also investigated. Through hydrothermal stability test and XRD analysis, the P-modified catalyst had strong resistant to the pressurized and hot $H_2O$. The mechanical strength of the P-modified catalyst was also examined through an in-house fluidized-bed vessel, and it was found that the catalyst fragmentation could be successfully suppressed with P. Taken as a whole, the best performance was shown to be at 1~2 wt.% P in alumina and at the calcination temperature of $500^{\circ}C$.

Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption (LSX 제올라이트의 합성 및 질소 흡착 특성)

  • Hong, Seung Tae;Lee, Jung-Woon;Hong, Hyung Phyo;Yoo, Seung-Joon;Lim, Jong Sung;Yoo, Ki-Pung;Park, Hyung Sang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The $Na_2O/(Na_2O+K_2O)$ ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the $Na_2O/(Na_2O+K_2O)$ ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. $Li^+$ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. $Li^+$ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the $Ca^{2+}$ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.