• Title/Summary/Keyword: XRD analysis

Search Result 2,604, Processing Time 0.028 seconds

Study on The Electrical Characteristics of Chromium Oxide Film Produced by ton Beam Sputter Deposition (이온선 스퍼터 증착법에 의하여 제초된 CrOX의 전기적 특성에 관한 연구)

  • 조남제;장문식;이규용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.409-414
    • /
    • 1999
  • The influence of ion beam energy and reactive oxygen partial pressure on the electrical and crystallographic characteristics of transition metal oxide compound(Cr0x) film was studied in this paper. Chromium oxide films were prepared onto the coverglass using Ion Beam Sputter Deposition(1BSD) technique according to the processing conditions of the partial pressure of reactive oxygen gas and ion beam energy. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. As results, according to the XRD, XPS and resistivity measurement, the deposited films were the cermet type films which has a crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increasernent of the ion b m energy during the deposition process happened to decreasernent of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

  • PDF

Characterization of Helicon Plasma by H$_2$ Gas Discharge and Fabrication of Diamond Tinn Films

  • Hyun, June-Won;Kim, Yong-Jin;Noh, Seung-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.12-17
    • /
    • 2000
  • Helicon waves were excited by a Nagoya type III antenna in magnetized plasma, and hydrogen and methane are fed through a Mass Flow Controller(MFC). We made a diagnosis of properties of helicon plasma by H$_2$gaseous discharge, and fabricated the diamond thin film. The maximum measured electron density was 1${\times}$10$\^$10/ cm$\^$-3/. Diamond films have been growo on (100) silicon substrate using the helicon plasma chemical vapor deposition. Diamond films were deposited at a pressure of 0.1 Torr, deposition time of 40~80 h, a substrate temperature of 700$^{\circ}C$ and methane concentrations of 0.5~2.5%. The growth characteristics were investigated by means of X-ray Photoelectron (XPS) and X-ray Diffraction(XRD), XRD and XPS analysis revealed that SiC was formed, and finally diamond particles were definitely deposited on it. With increasing deposition time, the thickness and crystallization of the daimond thin film increased, For this system the optimum condition of methane concentration was estimated to near to 1.5%.

  • PDF

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

Effects of the Maghemite for Explosive accident Prevention to Liquefied Petroleum Gas (LPG 폭발사고 예방을 위한 Maghemite의 영향)

  • 박영구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.67-78
    • /
    • 1996
  • Gas sensing element, $\gamma-Fe_2O_3$was synthesized by dehydration, reduction, and oxidation of $$${\gamma}$-FeOOH, which was synthesized with $FeSO_4\;{\cdot}\;7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of liquefied-petroleum were studied. The qualities of gas sensing elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH $synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM, TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha -FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$responded more quickly than the bulk-type did. The structure and the relative surface area of the $\alpha-FeOOH $were confirmed as the important factors deciding gas response charcteristics.

  • PDF

DEGRADATION OF Zn$_3$$N_2$ FILMS PREPARED BY REACTIVE RF MAGNETRON SPUTTERING

  • Futsuhara, Masanobu;Yoshioka, Katsuaki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.563-569
    • /
    • 1996
  • Degradation of $Zn_3N_2$ films is studied by using several analytical techniques. Polycrystalline $Zn_3N_2$ films prepared by reactie rf magnetron sputtering are kept in the air. Electrical and optical properties are measured by using van der Pauw technique and double-beam spectrometry. Structure and chemical bonding states are studied by X-ray diffraction(XRD), Fourier transfer infrared ray spectroscopy(FT-IR) and X-ray photoelectron specroscopy (XPS). Significant differences are observed in optical properties between the degraded film and the ZnO film. XRD analysis reveals that the degraded film contains very small ZnO grains because very weak and broad ZnO peaks are observed. XPS and FT-IR measurements reveal the formation of $Zn(OH)_2$ in the degraded film. The existence of N-H bonds in degraded films is exhibited from the N 1s spectra. $Zn_3N_2$ change into the mixture of ZnO, $Zn(OH)_2$ and an ammonium salt.

  • PDF

Effect of Mechanical Polishing Pretreatment on Tribological Properties of Manganese Phosphate Coating of Carbon Steel (기계적 연마 전처리가 인산망간 피막의 윤활 특성에 미치는 영향)

  • Kim, Ho-Young;Noh, Young-Tai;Jeon, Jun-Hyuck;Kang, Ho-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.350-356
    • /
    • 2019
  • In this study, the effect of mechanical polishing of carbon steel on the tribological properties of manganese phosphate coating on carbon steel has investigated. The microstructure, surface morphology and chemical composition were analyzed by SEM, EDS, and XRD. The surface roughness test was carried out in order to calculate Rvk value by 3D laser microscopy. Also, the tribology property of manganese phosphate coating was tested by ball-on disk. In the results of EDS analysis, coating layer consists of elements such in Mn, P, Fe, and O. XRD showed that (Mn,Fe)5H2(PO4)4·4H2O in manganese phosphate coating layer was formed by the chemical reaction between manganese phosphate and elements in carbon steel. As the mechanical polishing degree increased, the friction coefficient was reduced. The rougher the mechanical polishing degree, the better corrosion resistance was obtained.

Effect of a Cu Buffer Layer on the Structural, Optical, and Electrical Properties of IGZO/Cu bi-layered Films

  • Moon, Hyun-Joo;Gong, Tae-Kyung;Kim, Daeil;Choi, Dong-Hyuk;Son, Dong-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.18-20
    • /
    • 2016
  • Transparent and conducting IGZO thin films were deposited by RF magnetron sputtering on thin Cu coated glass substrates to investigate the effect of a Cu buffer layer on the structural, optical, and electrical film properties. Although X-ray diffraction (XRD) analysis revealed that both the IGZO single layer and IGZO/Cu bi-layered films were in the amorphous phase, the IGZO/Cu films showed a lower resistivity of 5.7×10−4 Ωcm due to the increased mobility and high carrier concentration. The decreased optical transmittance of the IGZO/Cu films was also attributed to a one order of magnitude higher carrier concentration than the IGZO films. From the observed results, the thin Cu layer is postulated to be an effective buffer film that can enhance the opto-electrical performance of the IGZO films in transparent thin film transistors.

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films (기판온도가 ZnS 박막의 구조 및 광학적 특성에 미치는 영향)

  • Hwang, Dong-Hyun;Ahn, Jung-Hoon;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.760-765
    • /
    • 2011
  • Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.

Characteristics of $ZnGa_2O_4$ phosphor prepared by Precipitation method and Solid-state reaction method (침전법과 고상반응법으로 제조한 $ZnGa_2O_4$ 형광체의 특성)

  • Cha, Jae-Hyeok;Kim, Se-Jun;Kwak, Hyun-Ho;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.383-384
    • /
    • 2007
  • The nano and micro-sized $ZnGa_2O_4$ phosphor were prepared by precipitation method and solid-state method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The result of XRD analysis showed that $ZnGa_2O_4$ spinel structure was formed at as-prepared in the case of precipitation method. However, micro-sized phosphor was required high heating treatment to have a satisfactory spinel structure. The CL intensity of nano-sized phosphor was about 4-fold higher than that of micro-sized phosphor. The emission spectra of all $ZnGa_2O_4$ phosphor show a self activated blue emission band at around 420 nm in the wide range of 300~600 nm.

  • PDF

Crystal Structure and Quantitative Phase Analysis of Multiphase Sample using RIETAN and MEED (RIETAN 및 MEED법에 의한 다상시료의 결정구조 및 정량상 분석)

  • 김광복;천희곤;조동율;신종근;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.303-307
    • /
    • 2000
  • The crystal structure of ZnS fabricated by gas-liquid phase reaction was obtained by XRD and refined by RIETAN near R$_{wp}$ factor 10%. The increasement of HCP phase depended on extra H$_2$S gas and the lattice parameter and crystalline size changed by the relative ratio of multiphase. Using ZnS of the different multiphase ratio and crystalline size, sintered ZnS:Cu, Al green phosphor and the CL property resulted optimum luminescence in the range of 91~94% and 150~190$\AA$, respectably, FCC/HCP ratio and crystalline size. As changing of structure ratio, the reason of different luminescence property is now studying. As well as, after XRD pattern of TiO$_2$powder fitted by RIETAN and the structure factor using MEED method simulated about each atom of (002) plane. Additionally, we proposed RIETAN and MEED were the methods of the study of luminescence mechanism for many phosphor materials.s.

  • PDF