• Title/Summary/Keyword: XRD Diffraction

Search Result 2,787, Processing Time 0.042 seconds

A Study on Cation Extraction and Impurity Separation in Slag (슬래그 내 양이온 추출 및 불순물 분리 연구)

  • Lee, Ye Hwan;Kang, Hyerin;Jang, Younghee;Lee, Si-Jin;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.311-315
    • /
    • 2019
  • The cation extraction and impurity separation were studied in order to investigate the recyclability of a slag produced from the steel refinery industry. Two types of slag (Slag-A, B) were collected and characterized in this study. The initial characterization by X-ray diffraction (XRD) and X-ray fluorescence (XRF) confirmed the existence of various kinds of ions in the slag such as Ca2+ (30 ~ 40%), Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), and Mg2+ (3 ~ 5%). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis on the extracted slag using 2 M HCl as a solvent indicated that a higher concentration of Ca2+ was extracted as the S/L ratio was increased. The Ca2+ extraction concentration were found to be 8,940 mg L-1 (Slag-A) and 10,690 (Slag-B) mg L-1 when the S/L ratio for Ca2+ extraction was 0.1. However, the extract was strongly acidic ( < pH 1) at 0.1 S/L. Also the other ions (impurities) were extracted simultaneously in addition to Ca2+. To increase the purity of Ca2+ in order to transform the slag to a high value resource, a pH-swing was conducted. The impurities tended to precipitate at higher rate as the pH was increased. Notably, the Ca2+ rapidly precipitated above a certain pH and at a pH of 10.5, while the selectivity of Ca2+ was over 99%. It is expected that the aqueous solution in which high contents of Ca2+ was selectively dissolved in this study would be suitable for the carbonation process for reducing CO2 and for the production of calcium carbonate.

Effects of Mn- and K-addition on Catalytic Activity of Calcium Oxide for Methane Activation (메탄 활성화반응에서 산화칼슘 촉매의 활성에 대한 망간과 칼륨의 첨가효과)

  • Park, Jong Sik;Kong, Jang Il;Jun, Jong Ho;Lee, Sung Han
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.618-628
    • /
    • 1998
  • Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800$^{\circ}C$ to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction(XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally $p(CH_4)/p(O_2)=250$ Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best $C_2$ yield of 8.0% with a selectivity of 43.2% at 775$^{\circ}C$. The $C_2$ selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO([Mn] > 6.3 mol%) catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the $C_2$ selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000$^{\circ}C$ at Po2's of $10^{-3}\; to\;10^{-1}\;atm.$ The electrical conductivity was decreased with Mn-doping and increased with increasing $P0_2$in the range of $10^{-3}\;to\;10^{-1}\;atm,$ indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry.

  • PDF

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.

Preparation of Na-X and Na-A Zeolites from Coal Fly Ash in a Thermoelectric Power Plant and Comparison of the Adsorption Characteristics for Cu(II) with a Commercial Zeolite (화력발전소 석탄비산재를 이용한 Na-X와 Na-A 제올라이트 제조 및 상업용 제올라이트와의 Cu(II) 흡착 특성 비교)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Kim, Dong-Su;Ahn, Hye-Young;Kim, Dae-Ho;Choi, Chi-Dong;Reddy, Kodoru Janardhan;Yang, Jae-Kyu;Chang, Yoon-Young
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.749-756
    • /
    • 2019
  • Na-X and Na-A zeolites that give high adsorption capacity for heavy metals in an aqueous system were synthesized from the coal fly ash obtained from a thermoelectric power plant using a fusion method. The characteristics and Cu(II) adsorption capacity of the synthetic zeolites were also compared to those of using a commercial zeolite. For the selection of optimum conditions of zeolite synthesis, the effects of major parameters in the fusion method such as a dosage ratio of NaOH, aging time, hydrothermal reaction time, and also the dosage ratio of NaAlO2 (Na-A) on the characteristics and Cu(II) adsorption capacity of the synthetic zeolites were studied. For the analysis of characteristics of the synthetic zeolites, X-ray diffraction (XRD), cation exchange capacity (CEC), Brunaue-Emmett-Teller (BET) and scanning electron microscopy (SEM) were used. The optimum conditions for the synthesis of zeolites with a high adsorption capacity for cationic heavy metals including Cu(II) were the aging time of 6 h, hydrothermal reaction time of 6 h and NaOH and NaAlO2 dosage ratio of 1.5 and 0.5 (Na-A), respectively. According to the Langmuir isotherm test, maximum Cu(II) adsorption capacities of the synthetic and commercial Na-X and Na-A zeolites were found to be 90.1, 105.26, 102.05, and 109.89 mg/g, respectively. This indicates that the adsorption capacity of synthetic zeolites was comparable to commercial ones. The results of this study also suggest that the coal fly ash can be potentially used as a raw material for the zeolite synthesis.

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

Microbial Leaching of Iron from Magnetite (미생물을 이용한 자철석으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Seo, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.265-275
    • /
    • 2006
  • It is in its infancy to use bacteria as a novel biotechnology for leaching precious and heavy metals from raw materials. The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite reduction by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial leaching experiments were performed using commercial magnetite, Aldrich magnetite, in well-defined mediums with and without bacteria. Water soluble Fe production was determined by ICP analysis of bioleached samples in comparison to uninoculated controls, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 107 ppm) was higher than that in the anaerobic environments (Fe = 94 ppm). In the anaerobic conditions, Fe(III) in commercial magnetite was also reduced to Fe(II), but no secondary mineral phases were observed. Amorphous iron oxides formed in the medium under aerobic conditions where there was sufficient supply of oxygen from the atmosphere. SEM observation suggests that the reduction process involves dissolution-precipitation mechanisms as opposed to solid state conversion of magnetite to amorphous iron oxides. The ability of bacteria to leach soluble iron and precipitate amorphous iron oxides from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite plays an important role in the largest pool of electron acceptor as well as the tool as a novel biotechnology for leaching precious and heavy metals from raw materials.

Hydrothermal Synthesis of Kaolinite and Change of Its Properties (캐올리나이트의 수열합성 및 특성변화)

  • Jang, Young-Nam;Ryu, Gyoung-Won;Chae, Soo-Chun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Kaolinite was synthesized from amorphous $SiO_2$ and $Al(OH)_3{\cdot}xH_{2}O$ as starting materials by hydrothermal reaction conducted at $250^{\circ}C$ and $30\;kg/cm^2$. The acidity of the solution was adjusted at pH 2. The synthesized kaolinite was characterized by XRD, IR, NMR, FE-SEM, TEM and EDS to clarify the formational process according to the reaction time from 2 to 36 hours. X-ray diffraction patterns showed after 2 h of reaction time, the starting material amorphous $Al(OH)_3{\cdot}xH_{2}O$ transformed to boehmite (AlOOH) and after the reaction time 5 h, the peaks of boehmite were observed to be absent thereby indicating the crystal structure is partially destructed. Kaolinite formation was identified in the product obtained after 10 h of reaction and the peak intensity of kaolinite increased further with reaction time. The results of TGA and DTA revealed that the principal feature of kaolinite trace are well resolved. TGA results showed 13 wt% amount of weight loss and DTA analysis showed that exothermic peak of boehmite observed at $258^{\circ}C$ was decreased gradually and after 10 h of reaction time, it was disappeared. After 5 h of the reaction time, the exothermicpeak of transformation to spinel phase was observed and the peak intensiy increased with reaction time. The results of FT-IR suggested a highly ordered kaolinite was obtained after 36 hours of reaction. It was identified by the characteristic hydroxide group bands positioned at 3,696, 3670, 3653 and $3620\;cm^{-1}$. The development of the hydroxyl stretching between 3696 and $3620\;cm^{-1}$, depends on the degree of order and crystalline perfection. TEM results showed that after 15 h reaction time, curved platy kaolinite was observed as growing of (001) plane and after 36 h, the morphology of synthetic kaolinite exhibited platy crystal with partial polygonal outlines.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Pressure-load Calibration of Multi-anvil Press and the Thermal Gradient within the Sample Chamber (멀티 앤빌 프레스의 압력-부하 보정 작업과 시료 내의 온도구배 연구)

  • Kim, Eun Jeong;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.161-172
    • /
    • 2018
  • Multi-anvil press (MAP) is one of the high pressure apparatuses and often generates the pressure-conditions ranging from 5 to 25 GPa and temperature-conditions up to $2,300^{\circ}C$. The MAP is, therefore, suitable to explore the pressure-induced structural changes in diverse earth materials from Earth's mantle and the bottom of the mantle transition zone (~660 km). In this study, we present the experimental results for pressure-load calibration of the 1,100-ton multi-anvil press equipped in the authors' laboratory. The pressure-load calibration experiments were performed for the 14/8 step, 14/8 G2, 14/8 HT, and 18/12 assembly sets. The high pressure experiments using ${\alpha}$-quartz, wollastonitestructure of $CaGeO_3$, and forsterite as starting materials were analyzed by powder X-ray diffraction spectroscopy. The phase transition of each mineral indicates the specific pressure that is loaded to a sample at $1,200^{\circ}C$: a transition of ${\alpha}$-quartz to coesite at 3.1 GPa, that of garnet-structure of $CaGeO_3$ to perovskite-structure at 5.9 GPa, that of coesite to stishovite at 9.2 GPa, and that of forsterite to wadsleyite at 13.6 GPa. While the estimated pressure-load calibration curve is generally consistent with those obtained in other laboratories, the deviation up to 50 tons is observed at high pressure above 10 GPa. This is partly because of the loss of oil pressure at high pressure resulting from the differences in a sample chamber, and the frictional force between pressure medium and second anvil. We also report the ${\sim}200^{\circ}C/mm$ of thermal gradient in the vertical direction of the sample chamber of 14/8 HT assembly. The pressure-load calibration curve and the observed thermal gradient within the sample chamber can be applied to explain the structural changes and the relevant macroscopic properties of diverse crystalline and amorphous earth materials in the mantle.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.