• Title/Summary/Keyword: XPA

Search Result 7, Processing Time 0.021 seconds

Xeroderma pigmentosum group A with mutational hot spot (c.390-1G>C in XPA ) in South Korea

  • Choi, Jung Yoon;Yun, Hyung Ho;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Purpose: Xeroderma pigmentosum (XP) is rare autosomal recessive genetic disorder of DNA repair in which the ability to repair damage caused by ultraviolet light is deficient. We reported the first molecularly confirmed Korean patient of XP by targeted exome sequencing. The prevalence of XP included all subtype and carrier frequency of XP-A the using public data were estimated for the first time in South Korea. Materials and Methods: We described a 4-year-old Korean girl with clinical diagnosis of XP. We performed targeted exome sequencing in the patient for genetic confirmation considering disease genetic heterogeneity and for differential diagnosis. We verified a carrier frequency of c.390-1G>C in XPA gene known as mutational hot spot using Korean Reference Genome Data Base. We estimated the period prevalence of all subtypes of XP based on claims data of the Health Insurance Review and Assessment Service in South Korea. Results: We identified homozygous splicing mutation of XPA (c.390-1G>C) in the patient. The carrier frequency of risk for XPA (c.390-1G>C) was relatively high 1.608 e-03 (allele count 2/1244). The prevalence of XP in South Korea was 0.3 per million people. Conclusion: We expect that c.390-1G>C is hot spot for the mutation of XPA and possible founder variant in South Korea. However, the prevalence in South Korea was extremely low compared with Western countries and Japan.

Recognition of DNA Damage in Mammals

  • Lee, Suk-Hee
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.489-495
    • /
    • 2001
  • DNA damage by UV and environmental agents are the major cause of genomic instability that needs to be repaired, otherwise it give rise to cancer. Accordingly, mammalian cells operate several DNA repair pathways that are not only responsible for identifying various types of DNA damage but also involved in removing DNA damage. In mammals, nucleotide excision repair (NER) machinery is responsible for most, if not all, of the bulky adducts caused by UV and chemical agents. Although most of the proteins involved in NER pathway have been identified, only recently have we begun to gain some insight into the mechanism by which proteins recognize damaged DNA. Binding of Xeroderma pigmentosum group C protein (XPC)-hHR23B complex to damaged DNA is the initial damage recognition step in NER, which leads to the recruitment of XPA and RPA to form a damage recognition complex. Formation of damage recognition complex not only stabilizes low affinity binding of XPA to the damaged DNA, but also induces structural distortion, both of which are likely necessary for the recruitment of TFIIH and two structure-specific endonucleases for dual incision.

  • PDF

Development of New Functional Materials based on Polyamides

  • Maeda, Shuichi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.146-147
    • /
    • 2006
  • Polyamides have been widely used in the various industrial fields on account of their excellent properties. Especially the largest market with more than 40% of the total demand is in automobiles and transportation equipment. In this lecture, we would like to introduce several new functional materials (new polyamide elastomer UBESTA XPA, UBESTA gas pipe system and new polyamide terpolymer TERPALEX) based on polyamides developed by UBE. Here UBESTA is the trademark for UBE's polyamide12.

  • PDF

Role of DNA Repair-related Gene Polymorphisms in Susceptibility to Risk of Prostate Cancer

  • Yang, Bo;Chen, Wei-Hua;Wen, Xiao-Fei;Liu, Hui;Liu, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5839-5842
    • /
    • 2013
  • Aim: We assessed the association between genetic variants of XPG, XPA, XPD, CSB, XPC and CCNH in the nucleotide excision repair (NER) pathway and risk of prostate cancer. Methods: We genotyped the XPG, XPA, XPD, CSB, XPC and CCNH polymorphisms by a 384-well plate format on the MassARRAY(R) platform. Multivariate logistical regression analysis was used to assess the associations between the six gene polymorphisms and risk of prostate cancer. Results: Individuals carrying the XPG rs229614 TT (OR=2.01, 95%CI=1.35-3.27) genotype and T allele (OR=1.73, 95%CI=1.37-2.57) were moderately significantly associated with a higher risk of prostate cancer. Subjects with XPD rs13181 G allele had a marginally increased risk of prostate cancer, with adjusted OR(95%CI) of 1.53 (1.04-2.37). Moreover, individuals carrying with CSB rs2228526 GG genotype (OR=2.05, 95% CI=1.23-3.52) and G allele (OR=1.56, 95%CI=1.17-2.05) were associated with a higher increased risk of prostate cancer. The combination genotype of XPG rs2296147 T and CSB rs2228526 G allele had accumulative effect on the risk of this cancer, with an OR (95% CI) of 2.23(1.37-3.59). Conclusions: Our study indicates that XPG rs2296147 and CSB rs2228526 polymorphisms are significantly associated with increased risk of prostate cancer, and that combination of XPG rs2296147 T allele and CSB rs2228526 G allele is strongly associated with an increased risk.

Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

  • Dashwood, Roderick H.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and $gpt{\Delta}$ transgenics, $XPA^{-/-}$, $XPC^{-/-}$, $Msh2^{+/-}$, $Msh2^{-/-}$ and $p53^{+/-}$ knock-outs, Apc mutant mice ($Apc^{{\Delta}716}$, $Apc^{1638N}$, $Apc^{min}$), and $A33^{{\Delta}N{\beta}-cat}$ knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac.

Recent Progress in Transgenic Mouse Models as an Alternative Carcinogenicity Bioassay (형질전환 마우스 모델 발암성 평가의 최신 지견)

  • Son Woo-Chan;Kim Bae-Hwan;Jang Dong-Deuk;Kim Chull-Kyu;Han Beom-Seok;Kim Jong-Choon;Kang Boo-Hyon;Lee Je-Bong;Choi Yang-Kyu;Kim Hyoung-Chin
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • Transgenic mouse models have been introduced and accepted by regulatory bodies as an alternative to carcinogenicity assay models to predict and evaluate chemical carcinogens. The recent research outcomes in transgenic mouse models have made progressive advances in the understanding of chemical carcinogenesis and the evaluation of potential human carcinogens. However, these models still remain to be insufficient assay systems although the insufficiencies have been recognised and are being resolved. Based on up to date information from literature, this review article intends to understand currently accepted transgenic mouse models, issues arising from study design, interpretation of the study, results of validation project and their cancer prediction rate, and further perspectives of cancer assay models from the regulatory view point.

Identification of Genes Connected with the Sensitivity to 5-FU and Cisplatin in Squamous Cell Carcinoma Cell Lines (편평세포암 세포주에서 5-FU와 Cisplatin에의 감수성과 관련된 유전자의 동정)

  • Choi, Na-Young;Kim, Ok-Joon;Lee, Geum-Sug;Kim, Byung-Gook;Kim, Jae-Hyeong;Jang, Youn-Young;Lim, Won-Bong;Chong, Min-A;Choi, Hong-Ran
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.287-300
    • /
    • 2005
  • Squamous cell carcinoma (SCC) in head and neck show a variability in the response to chemotherapy, even when it present with similar histological tumor type, grade, and clinical stage. The purpose of present study it to identify predictive bio-marker for the sensitivity or resistance to conventional chemotherapeutic agents, 5-fluorouracil (5-FU) and Cisplatin Oral cancer cell lines were used in present study. MTT assay was performed to evaluate the sensitivity and/or resistance to 5-FU and Cisplatin. And RT-PCR was carried out for evaluation of the mRNA expressions of various genes associated with mutation, inflammation (COX pathway), cell cycle, senescence and extracellular matrix (ECM). The molecules which are correlated with the sensitivity to 5-FU are XPA, XPC, OGG, APEX, COX-2, PPAR, Cyclin E, Cyclin B1, CDC2, hTERT, hTR, TIMP-3, TIMP-4 and HSP47. And the molecules are correlated with the sensitivity to Cisplatin are COX-1, iNOS, eNOS, PCNA, collagen 1 and MMP-9. Taken together, when choosing the appropriate chemotherpeutic agents for patients, considering the molecules which are correlated or reversely correlated is helpful to choose the resonable agents for cancer patients.