References
- Agalliu I, Kwon EM, Salinas CA, et al (2010). Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control, 21, 289-300. https://doi.org/10.1007/s10552-009-9461-5
- Berhane N, Sobti RC, Mahdi SA (2012). DNA repair genes polymorphism (XPG and XRCC1) and association of prostate cancer in a north Indian population. Mol Biol Rep, 39, 2471-9. https://doi.org/10.1007/s11033-011-0998-5
- Chang CH, Chiu CF, Wang HC, et al (2009). Significant association of ERCC6 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan. Anticancer Res, 29, 5121-4.
- Chen J, Cui X, Zhou H, et al (2013). Functional promoter -31G/C variant of Survivin gene predict prostate cancer susceptibility among Chinese: a case control study. BMC Cancer, 13, 356. https://doi.org/10.1186/1471-2407-13-356
- Dizdaroglu M (2012). Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett, 327, 26-47. https://doi.org/10.1016/j.canlet.2012.01.016
- Farrell J, Petrovics G, McLeod DG, Srivastava S (2013). Genetic and Molecular Differences in Prostate Carcinogenesis between African American and Caucasian American Men. Int J Mol Sci, 14, 15510-31. https://doi.org/10.3390/ijms140815510
- Grant WB (2004). A multi country ecologic study of risk and risk reduction factors for prostate cancer mortality. Eur Urol, 45, 271-9. https://doi.org/10.1016/j.eururo.2003.08.018
- Globocan 2008 (2008). Prostate Cancer Incidence, Mortality and Prevalence Worldwide in 2008. http://globocan.iarc.fr/factsheet.asp. International Agency for Research on Cancer.
- Goode EL, Ulrich CM, Potter JD (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev, 11, 1513-30.
- Grunda JM, Fiveash J, Palmer CA, et al (2010). Rationally designed pharmacogenomic treatment using concurrent capecitabine and radiotherapy for glioblastoma; gene expression profiles associated with outcome. Clin Cancer Res, 16, 2890-8. https://doi.org/10.1158/1078-0432.CCR-09-3151
- Hooker S, Bonilla C, Akereyeni F, Ahaghotu C, Kittles RA (2008). NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis, 11, 349-56. https://doi.org/10.1038/sj.pcan.4501027
- Hu JJ, Mohrenweiser HW, Bell DA, Leadon SA, Miller MS (2002). Symposium overview: genetic polymorphisms in DNA repair and cancer risk. Toxicol Appl Pharmacol, 185, 64-73. https://doi.org/10.1006/taap.2002.9518
- Hu JJ, Hall MC, Grossman L, et al (2004). Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res, 64, 1197-201. https://doi.org/10.1158/0008-5472.CAN-03-2670
- Hyytinen ER, Frierson HF Jr, Sipe TW, et al (1999). Loss of heterozygosity and lack of mutations of the XPG/ERCC5 DNA repair gene at 13q33 in prostate cancer. Prostate, 41, 190-5. https://doi.org/10.1002/(SICI)1097-0045(19991101)41:3<190::AID-PROS6>3.0.CO;2-2
- Liao SG, Liu L, Wang Y, et al (2012). XPD Asp312Asn polymorphism is a risk factor for prostate cancer. J Cancer Res Clin Oncol, 138, 1689-95. https://doi.org/10.1007/s00432-012-1246-7
- Mittal RD, Mandal RK (2012). Genetic variation in nucleotide excision repair pathway genes influence prostate and bladder cancer susceptibility in North Indian population. Indian J Hum Genet, 18, 47-55. https://doi.org/10.4103/0971-6866.96648
- Neumann AS, Sturgis EM, Wei Q (2005). Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers: a review of molecular epidemiological studies. Mol Carcinog, 42, 65-92. https://doi.org/10.1002/mc.20069
- Nock NL, Cicek MS, Li L, et al (2006). Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis, 27, 1842-8. https://doi.org/10.1093/carcin/bgl022
- Priyadarshini A, Chakraborti A, Mandal AK, Singh SK (2013). Asp299Gly and Thr399Ile polymorphism of TLR-4 gene in patients with prostate cancer from North India. Indian J Urol, 29, 37-41. https://doi.org/10.4103/0970-1591.109982
- Rybicki BA, Nock NL, Savera AT, Tang D, Rundle A (2006). Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett, 239, 157-67. https://doi.org/10.1016/j.canlet.2005.07.029
- Singh KP, Kumari R, Treas J, DuMond JW (2011). Chronic exposure to arsenic causes increased cell survival, DNA damage, and increased expression of mitochondrial transcription factor A (mtTFA) in human prostate epithelial cells. Chem Res Toxicol, 24, 340-9. https://doi.org/10.1021/tx1003112
- Smith TR, Miller MS, Lohman K, et al (2003). Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer. Cancer Lett, 190, 183-90. https://doi.org/10.1016/S0304-3835(02)00595-5
- Sobti RC, Berhane N, Melese S, et al (2012). Impact of XPD gene polymorphism on risk of prostate cancer on north Indian population. Mol Cell Biochem, 362, 263-8. https://doi.org/10.1007/s11010-011-1152-3
- Sun XH, Hou WG, Zhao HX, et al (2013). Single nucleotide polymorphisms in the NER pathway and clinical outcome of patients with bone malignant tumors. Asian Pac J Cancer Prev, 14, 2049-52. https://doi.org/10.7314/APJCP.2013.14.3.2049
- Tang D, Liu JJ, Rundle A, et al (2007) Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiol Biomark Prev, 16, 803-8. https://doi.org/10.1158/1055-9965.EPI-06-0973
- Wheless L, Kistner-Griffin E, Jorgensen TJ, et al (2012). A community-based study of nucleotide excision repair polymorphisms in relation to the risk of non-melanoma skin cancer. J Invest Dermatol, 132, 1354-62. https://doi.org/10.1038/jid.2012.4
- Wu Q, Christensen LA, Legerski RJ, Vasquez KM (2005). Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells. EMBO Rep, 6, 551-7. https://doi.org/10.1038/sj.embor.7400418
Cited by
- Associations of ERCC4 rs1800067 Polymorphism with Cancer Risk: an Updated Meta-analysis vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7639
- Allele and Genotype Distributions of DNA Repair Gene Polymorphisms in South Indian Healthy Population vol.6, pp.1179-299X, 2014, https://doi.org/10.4137/BIC.S19681
- Homozygous Wildtype of XPD K751Q Polymorphism Is Associated with Increased Risk of Nasopharyngeal Carcinoma in Malaysian Population vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0130530
- Evaluation of Environmental Risk Factors for Prostate Cancer in a Population of Iranian Patients vol.15, pp.24, 2014, https://doi.org/10.7314/APJCP.2014.15.24.10603
- Frequency of Unnecessarily Biopsies among Patients with Suspicion of Prostate Cancer in Syrian Men vol.16, pp.14, 2015, https://doi.org/10.7314/APJCP.2015.16.14.5967
- Significant Association of Alpha-Methylacyl-CoA Racemase Gene Polymorphisms with Susceptibility to Prostate Cancer: a Meta-Analysis vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1857
- gene with neuroblastoma risk in a Chinese population vol.20, pp.8, 2016, https://doi.org/10.1111/jcmm.12836
- The association between XPG polymorphisms and cancer susceptibility vol.96, pp.32, 2017, https://doi.org/10.1097/MD.0000000000007467