• 제목/요약/키워드: XLPE Cable

검색결과 316건 처리시간 0.03초

송전 XLPE 케이블 절연층을 이용한 전기트리 형성과 부분방전 양상의 상관관계 (A study on the correlation between the PD pattern and the formation of electrical trees by use of XLPE insulation for the underground power transmission cable)

  • 이전선;김정태;구자윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2051-2053
    • /
    • 1999
  • In this work, PD patterns and electrical trees are observed by use of the XLPE cable insulation. and the tree initiation voltage related to the contamination are also measured in order to calculate the electric stress necessary for the design of cable insulation. Throughout these works, correlation between the PD pattern and the shape of electrical tree has been observed that there may exist three distinct pattern of PD dependence on the stage of tree propagation, Such correlation could bring a basic information in connection with the partial discharge of cable system. It was also found that the electrical stress necessary for the initiation of electrical tree was measured to the 290kV/mm for the 154kV XLPE cables manufactured in KOREA.

  • PDF

22.9kV 트리억제형 전력케이블의 성능평가 (Efficiency appraisal of 22.9kV tree retardant power cable)

  • 김위영;윤대혁;박태곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.179-182
    • /
    • 2002
  • XLPE compound have used for insulation of 22.9(kV) power cable. But tree retardant power cable has developed and is going to br used commonly. TR XLPE compound retard production and growth of water tree. In this paper, tensile strength, elongation at break, degree of crosslinking, lightning impulse test, AC breakdown test, cyclic aging for 14days and accelerated water treeing test of TR XLPE insulated power cable were examined according to the KEPCO buying spec. & AEIC CS 5-94 standards. before and after As the result, tensile strength, elongation at break and degree of crosslinking test results of TR XLPE insulation were higher than requirement values. After accelerated water treeing test for 120 days, 240 days and 360 days, AC breakdown voltages were not decreased for accelerated water treeing aging duration

  • PDF

XLPE 전력용 Cable 시편의 부분방전원의 분류 (PD Classification by Neural Networks in Specimen of XLPE Power Cable)

  • 박성희;박재열;이강원;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.558-562
    • /
    • 2003
  • In this paper, neural networks is studied to apply as a PD source classification in XLPE power cable specimen. For treeing discharge sources in the specimen, three defected models are made. And these data making use of a computer-aided discharge analyser, statistical and other discharge parameters is calculated to discrimination between different models of discharge sources. And also these parameter is applied to classify PD sources by neural networks. Neural Networks has good recognition rate for three PD sources.

  • PDF

XLPE 케이블의 전기적 열화 패턴 분석 (Electrical Degradation Pattern Analysis according to XLPE Cable)

  • 민치현;곽동순;천현권;최진욱;김영석;김선구;김상현
    • 조명전기설비학회논문지
    • /
    • 제22권4호
    • /
    • pp.114-120
    • /
    • 2008
  • 일반적으로 22.9[kV] 이하의 케이블은 가교폴리에틸렌(XLPE)을 절연체로 사용하고 있다. XLPE내부의 결함으로 인한 사고로 경제적 및 인명피해가 발생한다. 이러한 사고에 대한 처리 기준이 마련이 되어 있지 않아 사고처리의 체계화가 시급히 필요한 실정이다. 본 연구에서는 XLPE 케이블의 사고 요인이 되는 전기적 열화현상에 대한 자료구축을 위하여 XLPE에 곡율반경이 $10[{\mu}m]$인 침천극을 삽입하여 절연파괴, 트리형상 및 연면방전 시료를 제작하였다. 단시간 파괴는 AC 60[Hz]의 전압을 1[kV/sec] 상승하였으며, 장기과전의 경우 AC 60[Hz]의 전압을 12[kV] 및 17[kV]를 인가하여 전기적 열화 특성에 대하여 실험을 하였다.

XLPE 절연체의 등가 및 가변온도 가속열화실험을 통한 기계적 특성 비교 분석 (A Comparison Study on Mechanical Properties of XLPE Insulation Thermally Degraded at Equivalent and Variable Temperature Conditions)

  • 김태준;황재상;정성훈;김태영
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.73-77
    • /
    • 2022
  • Recently, as the number of years of operation has increased for more than 30 years, interest in evaluating the remaining life of major power facilities such as transformers and ultra-high voltage cables is increasing. In particular, the risk of failure is increasing because the underground transmission XLPE cable has been built since 1980 and has been operating in excess of 30 years of design life or close proximity. Therefore, it is necessary to develop an algorithm to evaluate the residual life of the XLPE cable considering the load to determine the risk of failure. Since load data is large amount of data, it is necessary to make the variable load information equivalent to the time unit first in order to calculate the remaining life of the system quickly. In overseas literature, transformers are reported to be standardized for variable load equivalent conversion formulas, but they have not been reported for ultra-high voltage cables. Therefore, in this paper, whether the equivalent conversion formula of a transformer can be applied to XLPE cables was reviewed through accelerated degradation tests under equivalent and variable temperature conditions, and considerations were studied when evaluating the remaining operating life of XLPE cables based on the experimental results.

220kV XLPE CABLE 접속함용 Al-Cu 이종접속슬리브 개발 (Development of Friction Welded Al to Cn Bimetallic Sleeve for 220kV XLPE Cable Termination & Joint)

  • 김현주;박정기;박성민
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.93-93
    • /
    • 2010
  • We developed friction welded bimetallic sleeve for 220kV aluminum conductor XLPE cable. Not only friction welded bimetallic sleeve for Termination(EB-A, EB-G) but also friction welded sleeve for Joint of Al to Cu conductor was developed regardless of this project. Generally, friction welded sleeve used to connect Al conductor cable to Cu conductor cable and used for improvement of mechanical property of terminal by offer the copper side of friction welded bimetallic sleeve at the Termination. Connection method for Al-Cu conductor has mainly used friction welding at the solid state, because it is difficult to connect by using conventional welding method. this investigation introduces development of friction welded bimetallic sleeve by friction welding and test result of 220kV Al conductor XLPE cable and accessories using friction welded sleeve.

  • PDF

열처리 조건에 따른 XLPE / EPDM 계면의 전기적 특성 (Electrical Characteristics of the Interfacial Layer between XLPE/EPDM Laminates on the Heat Treatment)

  • 최원창;이제정;김석기;조대식;한상옥;박강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.225-228
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/FPDM laminates in cable joint. In this parer, we instituted the interface of XLPE/EPDM laminates and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction current was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And conduction current of XLPE/Oil 12500cSt/EPDM was more stable than XLPE/Grease/EPDM from the long heat treatment time. AC breakdown strength of silicone oil itself from the heat treatment was changed during the 4∼12 hour heat treatment time.

  • PDF

전력용 XLPE Cable의 부분방전과 방사전자파 특성 (Characteristics of Radiated Electromagnetic Wave and Partial Discharge in Power XLPE Cable)

  • 이광식;이현철;박광서;윤대희;이상훈;김종환;김충년;김기채
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.90-95
    • /
    • 2004
  • 본 논문은 XLPE(cross-linked polyethylene insulated power Cables)을 절연물로 사용하는 22.9[kV]용 전력케이블에 외부 손상에 의해 발생되는 부분 방전을 모의하였으며, 절연 진단방법 중 하나인 UHF법을 이용하여 부분 방전시 공간으로 전파되는 방사전자파을 EMI, EMC 측정용 BiconiLog 안테나(EMCO 3142)와 스펙트럼 아날라이저를 이용해 측정하는 UHF법을 이용하였다. 본 연구 결과 방전진전과정의 평가가 가능함을 확인하였다.

초고압 XLPE 케이블 접속함의 부분방전 펄스파형 시뮬레이션 (Pulse Waveform Simulation of Partial Discharges for HV XLPE Cable Joints)

  • 김정태
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.75-81
    • /
    • 2018
  • In this study, the simulation of partial discharge pulse waveform have been performed for the typical joints such as EBA and PMJ in the HV underground transmission XLPE cable system in order to improve the understanding of partial discharge pulse waveform and the on-site measurement accuracy of partial discharges. FDTD simulation technique was adopted for the simulation and has been shown to be suitable for partial discharge simulation of power cables in terms of pulse propagation characteristics and waveform formation. The simulation results for the EBA showed that the second not-so-large opposite polarity peak appeared after the first negative polarity peak and the measurement sensitivity was the highest near the bottom of the EBA copper box. In the analysis results for PMJ, the magnitude of the second opposite polarity peak was large enough to compare with the first peak, and the measurement sensitivity at the end of the PMJ copper box was the highest. These simulation results show considerable similarity with the on-site measurement, and it would be very useful for the partial discharge measurement of HV XLPE cable systems.

지중 전력케이블용 절연재료의 열적 특성 및 기계적 특성 (Thermal and Mechanical Properties of Insulation Materials for Underground Power Cable)

  • 이경용;이관우;최용성;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.138-141
    • /
    • 2004
  • In this paper, we Investigated effects on impurities and water of semiconductive shield through a thermal, mechanical, and absorption experiment to estimate performance of insulating materials in power cable. Specimens had been prepared 22[kV], 154[kV] XLPE power cables and then were made of sheet form with XLPE and semiconductive shield with dimension of 0.4[mm] ~1.2[mm] of thickness from power cable. Heat capacity $({\Delta}H)$ and glass trasition temperature (Tg) of XLPE sheet were measured by DSC (Differential Scanning Calorimetry). We could know that thermal stabilities of 154[kV] are more excellent than 22[kV] from this experimental result. The strain of mechanical properties in 22[kV] and 154[kV] XLPE was 486[%], 507[%] and stress was 1.74$[kgf/mm^2]$, 1.80$[kgf/mm^2]$. The absorption contents of existing semiconductive shield were measured 710[ppm] to 1,090[ppm], and semiconductive shield of 22[kV] cable was measured 14,750[ppm] to 24,780[ppm]. We thermal and mechanical properties of 154[kV] could know more excellent than 22[kV] from this experimental result.

  • PDF