재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.
본 연구에서는 아파트를 대표할 수 있는 내·외적 데이터를 수집하고 인공지능 기술들을 활용하여 아파트 가격을 예측하는 시스템을 구축하고자 한다. 구체적으로 웹크롤링 기법을 통해 수집한 아파트 내·외적 데이터의 변수들에 대한 특성 선택(Feature Selection)을 수행하였고, 다양한 인공지능 기법을 활용하여 부동산 가격 예측 모형을 개발하였다. 아파트 가격 예측 모형 생성을 위해 Linear Regression, Ridge, Xgboost, Lightgbm, Catboost 등의 기계학습 알고리즘을 사용하였고, RMSE를 사용하여 각 예측 모형 간의 성능 비교를 수행하였다. 가장 성능이 좋은 예측 모형은 Xgboost기반 예측 모형이였으며, RMSE값이 약 0.0366으로 가장 낮았으며 테스트 데이터에 대한 정확도는 약 95.1%였다.
Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.
Korea is facing a significant problem with historically low fertility rates, which is becoming a major social issue affecting the economy, labor force, and national security. This study analyzes the factors contributing to the regional gap in fertility rates and derives policy implications. The government and local authorities are implementing a range of policies to address the issue of low fertility. To establish an effective strategy, it is essential to identify the primary factors that contribute to regional disparities. This study identifies these factors and explores policy implications through machine learning and explainable artificial intelligence. The study also examines the influence of media and public opinion on childbirth in Korea by incorporating news and online community sentiment, as well as sentiment fear indices, as independent variables. To establish the relationship between regional fertility rates and factors, the study employs four machine learning models: multiple linear regression, XGBoost, Random Forest, and Support Vector Regression. Support Vector Regression, XGBoost, and Random Forest significantly outperform linear regression, highlighting the importance of machine learning models in explaining non-linear relationships with numerous variables. A factor analysis using SHAP is then conducted. The unemployment rate, Regional Gross Domestic Product per Capita, Women's Participation in Economic Activities, Number of Crimes Committed, Average Age of First Marriage, and Private Education Expenses significantly impact regional fertility rates. However, the degree of impact of the factors affecting fertility may vary by region, suggesting the need for policies tailored to the characteristics of each region, not just an overall ranking of factors.
소셜 Q&A 사이트에서는 사용자들이 서로 질문하고 답변한 내용들이 실시간으로 저장되어, 지식 저장소로서 중요한 역할을 수행한다. 이러한 소셜 Q&A 사이트가 지속적으로 성장하려면 신규 질문자와 답변자가 지속적으로 유입되어야 한다. 하지만 선행 연구는 기존 사용자, 그 중에서도 답변자의 자발적 지식 공유에 주로 초점을 맞추었고, 신규 참여자에 대한 관심이 부족했다. 본 연구는 동기부여 어포던스 이론과 자기결정이론을 이론적 근거로 하여 신규 참여자들이 소셜 Q&A 사이트를 지속적으로 사용하도록 하는 요인에 대해서 살펴보았으며, 신규 참여자가 질문자인지 답변자인지에 따라 영향요인에 차이가 있는지도 알아보았다. 추가적으로, 전환 비용의 개념을 활용하여 신규 사용자의 다른 멤버 사이트에 대한 사전 경험이 지속사용 영향요인에 대해서 가지는 조절효과도 확인해 보았다. Stack Exchange Network의 5개 주요 사이트에서 수집된 25,000명의 온라인 활동 데이터를 로지스틱 회귀분석과 XGBoost 기법을 통해 분석한 결과, 자기결정 이론에서 제시하는 근본적인 욕구 세가지(역량, 자율, 관계)와 연관된 동기부여 어포던스들이 신규사용자의 지속사용 행위에 유의한 영향력을 보여주었다. 멤버 사이트 사용 경험은 사용자들의 전환비용을 높여서 지속사용 선행요인들의 영향력을 약화시켰다. 흥미로운 점으로, 규제 관련 어포던스는 신규 사용자 전체를 대상으로 한 분석에서 유의하지 않은 결과를 보였으나, 질문자와 답변자를 구분한 분석에서는 서로 반대 방향으로 유의한 영향력을 보였다.
코로나 시대 이후 아파트 가격 상승은 비상식적이었다. 이러한 불확실한 부동산 시장에서 가격 예측 연구는 매우 중요하다. 본 논문에서는 다양한 부동산 사이트에서 자료 수집 및 크롤링을 통해 2015년부터 2020년까지 87만개의 방대한 데이터셋을 구축하고 다양한 아파트 정보와 경제지표 등 가능한 많은 변수를 모은 뒤 미래 아파트 매매실거래가격을 예측하는 모델을 만든다. 해당 연구는 먼저 다중 공선성 문제를 변수 제거 및 결합으로 해결하였다. 이후 의미있는 독립변수들을 뽑아내는 전진선택법(Forward Selection), 후진소거법(Backward Elimination), 단계적선택법(Stepwise Selection), L1 Regularization, 주성분분석(PCA) 총 5개의 변수 선택 알고리즘을 사용했다. 또한 심층신경망(DNN), XGBoost, CatBoost, Linear Regression 총 4개의 머신러닝 및 딥러닝 알고리즘을 이용해 하이퍼파라미터 최적화 후 모델을 학습시키고 모형간 예측력을 비교하였다. 추가 실험에서는 DNN의 node와 layer 수를 바꿔가면서 실험을 진행하여 가장 적절한 node와 layer 수를 찾고자 하였다. 결론적으로 가장 성능이 우수한 모델로 2021년의 아파트 매매실거래가격을 예측한 후 실제 2021년 데이터와 비교한 결과 훌륭한 성과를 보였다. 이를 통해 머신러닝과 딥러닝은 다양한 경제 상황 속에서 투자자들이 주택을 구매할 때 올바른 판단을 할 수 있도록 도움을 줄 수 있을 것이라 확신한다.
본 연구는 최근 가공 불량 예측 방법으로 주목받고 있는 머신러닝 기반의 모델을 이용하여 CNC 가공 불량 발생의 실시간 예측을 위한 분석 프레임워크를 제안하고, 해당 프레임워크에 기반하여 XGBoost, CatBoost, LightGBM, 랜덤 포레스트, Extra Trees, SVM, k-최근접 이웃, 로지스틱 회귀 모델을 CNC 설비에 기본 내장된 센서들로부터 추출된 데이터에 적용 및 분석하였다. 분석 결과 XGBoost, CatBoost, LightGBM 모델이 동일하게 가장 우수한 정확도, 정밀도, 재현율, F1 점수, AUC 값을 보였으며, 이 중 LightGBM 모델이 소요 실행 시간이 가장 짧은 것으로 나타났다. 이러한 짧은 소요 실행 시간은 실 시스템 구축 비용 절감, 빠른 불량 예측에 따른 CNC 장비 파손 확률 감소, 전체적인 CNC 활용률 증가 등의 실무적 장점을 가지므로 LightGBM 모델이 기본 센서들만 설치된 CNC 설비에 적용 시 가공 불량 예측에 가장 효과적으로 판단된다. 또한 소요 실행 시간 및 컴퓨팅 파워의 제약이 없는 상황에서는 LightGBM, Extra Trees, k-최근접 이웃, 로지스틱 회귀 모형으로 구성된 앙상블 모델을 적용할 경우 분류 성능이 최대화됨을 확인하였다.
This study aims to develop ensemble machine learning (ML) models for estimating the peak floor acceleration and maximum top drift of steel moment frames. For this purpose, random forest, adaptive boosting, gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) models were considered. A total of 621 steel moment frames were analyzed under 240 ground motions using OpenSees software to generate the dataset for ML models. From the results, the GBRT and XGBoost models exhibited the highest performance for predicting peak floor acceleration and maximum top drift, respectively. The significance of each input variable on the prediction was examined using the best-performing models and Shapley additive explanations approach (SHAP). It turned out that the peak ground acceleration had the most significant impact on the peak floor acceleration prediction. Meanwhile, the spectral accelerations at 1 and 2 s had the most considerable influence on the maximum top drift prediction. Finally, a graphical user interface module was created that places a pioneering step for the application of ML to estimate the seismic demands of building structures in practical design.
디지털 세상에서 불균형 데이터에 대한 클래스 분포는 중요한 부분이며 사이버 보안에 큰 의미를 차지한다. 불균형 데이터의 비정상적인 활동을 찾고 문제를 해결해야 한다. 모든 트랜잭션의 패턴을 추적할 수 있는 시스템이 필요하지만, 일반적으로 패턴이 비정상인 불균형 데이터로 기계학습을 하면 소수 계층에 대한 성능은 무시되고 저하되며 예측 모델은 부정확하게 편향될 수 있다. 본 논문에서는 불균형 데이터 세트를 해결하기 위한 접근 방식으로 Synthetic Minority Oversampling Technique(SMOTE)와 Light GBM 알고리즘을 이용하여 추정치를 결합하여 대상 변수를 예측하고 정확도를 향상시켰다. 실험 결과는 Logistic Regression, Decision Tree, KNN, Random Forest, XGBoost 알고리즘과 비교하였다. 정확도, 재현율에서는 성능이 모두 비슷했으나 정밀도에서는 2개의 알고리즘 Random Forest 80.76%, Light GBM 97.16% 성능이 나왔고, F1-score에서는 Random Forest 84.67%, Light GBM 91.96% 성능이 나왔다. 이 실험 결과로 Light GBM은 성능이 5개의 알고리즘과 비교하여 편차없이 비슷하거나 최대 16% 향상됨을 접근 방식으로 확인할 수 있었다.
Purpose: The deterioration in the quality of failure history data due to differences in interpretation of failures among workers at power plants and the lack of consistency in the way failures are recorded negatively impacts the efficient operation of power plants. The purpose of this study is to propose a system that classifies power generation facilities failures consistently based on the failure history text data created by the workers. Methods: This study utilizes data collected from three coal unloaders operated by Korea Midland Power Co., LTD, from 2012 to 2023. It classifies failures based on the results of Soft Voting, which incorporates the prediction probabilities derived from applying the predict_proba technique to four machine learning models: Random Forest, Logistic Regression, XGBoost, and SVM, along with scores obtained by constructing word dictionaries for each type of failure using LIME, one of the XAI (Explainable Artificial Intelligence) methods. Through this, failure classification system is proposed to improve the quality of power generation facilities failure history data. Results: The results of this study are as follows. When the power generation facilities failure classification system was applied to the failure history data of Continuous Ship Unloader, XGBoost showed the best performance with a Macro_F1 Score of 93%. When the system proposed in this study was applied, there was an increase of up to 0.17 in the Macro_F1 Score for Logistic Regression compared to when the model was applied alone. All four models used in this study, when the system was applied, showed equal or higher values in Accuracy and Macro_F1 Score than the single model alone. Conclusion: This study propose a failure classification system for power generation facilities to improve the quality of failure history data. This will contribute to cost reduction and stability of power generation facilities, as well as further improvement of power plant operation efficiency and stability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.