• 제목/요약/키워드: XGBoost Regression

검색결과 61건 처리시간 0.027초

경동맥 혈관 MRI에서 라디오믹스를 이용한 동맥경화증 진단 모델 (Diagnosis Atherosclerosis Model Using Radiomics Approach in Carotid Vessel MRI)

  • 김종훈;박현진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.289-290
    • /
    • 2022
  • 동맥경화증은 경동맥 혈관 벽이 두꺼워지는 질병으로 진단을 위해 혈관 벽의 두께를 모니터링하는 것이 중요하다. 본 연구에서는 경동맥 MRI 영상에서 324개의 라디오믹스 특징을 추출하고 머신러닝 기법을 이용하여 동맥경화증을 진단하는 모델을 제안한다. 라디오믹스 특징을 통해 로지스틱 회귀, 서포트 벡터 머신, 랜덤 포레스트, XGBoost의 총 4가지 분류 모델을 학습하였다. 5-fold 교차 검증에서 가장 높은 성능의 모델인 XGBoost는 정확도 0.9023, 민감도 0.9517, 특이도 0.8035, AUC 0.8776의 결과값을 보여준다.

  • PDF

커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용 (Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction)

  • 홍주표;고태영
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.594-609
    • /
    • 2023
  • TBM 공법은 굴착면 안정성 확보 및 주변환경에 비치는 영향을 최소화하기 때문에 도심지나 하·해저터널 등에서 적용 사례가 증가하는 추세이다. 디스크 커터의 수명을 예측하는 대표적인 모델 중 NTNU모델은 커터수명지수(Cutter Life Index, CLI)를 주요 매개 변수로 활용하지만 복잡한 시험절차와 시험장비의 희귀성으로 측정에 어려움이 있다. 본 연구에서는 다중선형회귀분석과 트리 기반의 머신러닝 기법으로 암석물성을 활용하여 CLI를 예측하였다. 문헌 조사를 통해 암석의 일축압축강도, 압열인장강도, 등 가석영함량과 세르샤 마모지수 등을 포함한 데이터베이스를 구축하였고 파생변수를 계산하여 추가하였다. 다중선형회귀분석은 통계적 유의성과 다중공선성을 고려하여 입력 변수를 선정하였고 머신러닝 예측 모델은 변수 중요도를 기반으로 입력 변수를 선정하였다. 학습용과 검증용 데이터를 8:2로 나누어 모델 간 예측 성능을 비교한 결과 XGBoost가 최적의 모델로 선정되었다. 본 연구에서 도출된 다중선형회귀모델과 XGBoost모델을 선행 연구와 예측 성능을 비교하여 타당성을 확인하였다.

1개월 기온 예측자료의 오차 특성 분석 및 보정 기법 연구 (Error Characteristic Analysis and Correction Technique Study for One-month Temperature Forecast Data)

  • 김용석;허지나;김응섭;심교문;조세라;강민구
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.368-375
    • /
    • 2023
  • 본 연구에서는 농촌진흥청과 홍콩과학기술대학교의 공동 개발로 생산된 1개월 예측 자료의 오차를 분석하고, 통계적 보정 기법을 활용한 오차 개선 효과를 살펴보고자 하였다. 이를 위해 2013년부터 2021년까지의 과거 예측(hindcast) 자료, 기상관측자료, 다양한 환경정보들을 수집하고 다양한 환경 조건에서의 오차 특성을 분석하였다. 최고기온과 최저기온의 경우, 해발고도와 위도가 높을 수록 예측 오차가 더 크게 나타났다. 평균적으로, 선형회귀모형과 XGBoost로 보정한 예측자료는 보정 전 예측자료보다 각각 0.203, 0.438(최고기온) 및 0.069, 0.390(최저기온) 정도의 RMSE가 감소했으며, 높은 고도와 위도에서의 오차 개선이 더 크게 나타났다. 모든 분석 조건에서 XGBoost가 선형회귀모형보다 우수한 오차 개선 효과를 나타냈다. 본 연구를 통해 예측 자료의 오차가 지형적 조건에 영향을 받는다는 사실을 확인하였고, XGBoost와 같은 기계학습법이 다양한 환경인자들을 고려하여 효과적으로 오차를 개선할 수 있다는 것을 확인하였다.

머신러닝을 이용한 정부통계지표가 소매업 매출액에 미치는 예측 변인 탐색: 약국을 중심으로 (Exploring the Predictive Variables of Government Statistical Indicators on Retail sales Using Machine Learning: Focusing on Pharmacy)

  • 이광수
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.125-135
    • /
    • 2022
  • 본 연구는 데이터, 네트워크, 인공지능을 기반으로 산업 생태계 조성을 위해 구축된 정부통계지표가 약국 매출액에 영향을 미치는지 머신러닝을 이용하여 변인을 탐색하고 약국 매출액 예측에 적합한 분석 기법을 제공하고자 한다. 이에, 본 연구는 28개 정부통계지표와 소매업종인 약국을 대상으로 2016년 1월부터 2021년 12월까지의 분석 데이터를 활용하여 머신러닝 기법인 랜덤 포레스트, XGBoost, LightGBM, CatBoost을 통해 예측 변인 및 성능을 탐색하였다. 분석결과 경기관련 지표인 경제심리지수, 경기동행지수순환변동치, 소비자심리지수는 약국 매출액에 영향을 미치는 중요한 변인으로 나타났고, 회귀성능은 지표 MAE, MSE, RMSE를 살펴본 결과 랜덤 포레스트가 XGBoost, LightGBM, CatBoost 보다 성능이 가장 우수하게 나타났다. 이에, 본 연구는 머신러닝 결과를 토대로 약국 매출액에 영향을 미치는 변인과 최적의 머신러닝 기법을 제시하였으며, 여러 시사점과 후속연구를 제안하였다.

Predicting 30-day mortality in severely injured elderly patients with trauma in Korea using machine learning algorithms: a retrospective study

  • Jonghee Han;Su Young Yoon;Junepill Seok;Jin Young Lee;Jin Suk Lee;Jin Bong Ye;Younghoon Sul;Se Heon Kim;Hong Rye Kim
    • Journal of Trauma and Injury
    • /
    • 제37권3호
    • /
    • pp.201-208
    • /
    • 2024
  • Purpose: The number of elderly patients with trauma is increasing; therefore, precise models are necessary to estimate the mortality risk of elderly patients with trauma for informed clinical decision-making. This study aimed to develop machine learning based predictive models that predict 30-day mortality in severely injured elderly patients with trauma and to compare the predictive performance of various machine learning models. Methods: This study targeted patients aged ≥65 years with an Injury Severity Score of ≥15 who visited the regional trauma center at Chungbuk National University Hospital between 2016 and 2022. Four machine learning models-logistic regression, decision tree, random forest, and eXtreme Gradient Boosting (XGBoost)-were developed to predict 30-day mortality. The models' performance was compared using metrics such as area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, specificity, F1 score, as well as Shapley Additive Explanations (SHAP) values and learning curves. Results: The performance evaluation of the machine learning models for predicting mortality in severely injured elderly patients with trauma showed AUC values for logistic regression, decision tree, random forest, and XGBoost of 0.938, 0.863, 0.919, and 0.934, respectively. Among the four models, XGBoost demonstrated superior accuracy, precision, recall, specificity, and F1 score of 0.91, 0.72, 0.86, 0.92, and 0.78, respectively. Analysis of important features of XGBoost using SHAP revealed associations such as a high Glasgow Coma Scale negatively impacting mortality probability, while higher counts of transfused red blood cells were positively correlated with mortality probability. The learning curves indicated increased generalization and robustness as training examples increased. Conclusions: We showed that machine learning models, especially XGBoost, can be used to predict 30-day mortality in severely injured elderly patients with trauma. Prognostic tools utilizing these models are helpful for physicians to evaluate the risk of mortality in elderly patients with severe trauma.

Prediction of Larix kaempferi Stand Growth in Gangwon, Korea, Using Machine Learning Algorithms

  • Hyo-Bin Ji;Jin-Woo Park;Jung-Kee Choi
    • Journal of Forest and Environmental Science
    • /
    • 제39권4호
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, we sought to compare and evaluate the accuracy and predictive performance of machine learning algorithms for estimating the growth of individual Larix kaempferi trees in Gangwon Province, Korea. We employed linear regression, random forest, XGBoost, and LightGBM algorithms to predict tree growth using monitoring data organized based on different thinning intensities. Furthermore, we compared and evaluated the goodness-of-fit of these models using metrics such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The results revealed that XGBoost provided the highest goodness-of-fit, with an R2 value of 0.62 across all thinning intensities, while also yielding the lowest values for MAE and RMSE, thereby indicating the best model fit. When predicting the growth volume of individual trees after 3 years using the XGBoost model, the agreement was exceptionally high, reaching approximately 97% for all stand sites in accordance with the different thinning intensities. Notably, in non-thinned plots, the predicted volumes were approximately 2.1 m3 lower than the actual volumes; however, the agreement remained highly accurate at approximately 99.5%. These findings will contribute to the development of growth prediction models for individual trees using machine learning algorithms.

Limiting conditions prediction using machine learning for loss of condenser vacuum event

  • Dong-Hun Shin;Moon-Ghu Park;Hae-Yong Jeong;Jae-Yong Lee;Jung-Uk Sohn;Do-Yeon Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4607-4616
    • /
    • 2023
  • We implement machine learning regression models to predict peak pressures of primary and secondary systems, a major safety concern in Loss Of Condenser Vacuum (LOCV) accident. We selected the Multi-dimensional Analysis of Reactor Safety-KINS standard (MARS-KS) code to analyze the LOCV accident, and the reference plant is the Korean Optimized Power Reactor 1000MWe (OPR1000). eXtreme Gradient Boosting (XGBoost) is selected as a machine learning tool. The MARS-KS code is used to generate LOCV accident data and the data is applied to train the machine learning model. Hyperparameter optimization is performed using a simulated annealing. The randomly generated combination of initial conditions within the operating range is put into the input of the XGBoost model to predict the peak pressure. These initial conditions that cause peak pressure with MARS-KS generate the results. After such a process, the error between the predicted value and the code output is calculated. Uncertainty about the machine learning model is also calculated to verify the model accuracy. The machine learning model presented in this paper successfully identifies a combination of initial conditions that produce a more conservative peak pressure than the values calculated with existing methodologies.

방사선량률 예측을 위한 기계학습 기반 모델 개발 및 최적화 연구 (Machine Learning Based Model Development and Optimization for Predicting Radiation)

  • 이시현;이홍연;염정민
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.551-557
    • /
    • 2023
  • In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.

머신러닝 기반 고용량 I-131의 용량 예측 모델에 관한 연구 (A Study on Predictive Modeling of I-131 Radioactivity Based on Machine Learning)

  • 유연욱;이충운;김정수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권2호
    • /
    • pp.131-139
    • /
    • 2023
  • High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technologists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded container with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algorithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, R2 0.92), decision tree (RMSE 108.89, MSE 11856.92, MAE 19.24, R2 0.99), random forest (RMSE 8.89, MSE 79.10, MAE 6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest predictive ability. Improving the model's performance in the future is expected to contribute to lowering exposure among radiology technologists.

머신러닝 학습 알고리즘을 이용한 광주천 수질 분석에 대한 예측 모델 연구 (A Study on the Prediction Model for Analysis of Water Quality in Gwangju Stream using Machine Learning Algorithm)

  • 정유정;이정재
    • 한국전자통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.531-538
    • /
    • 2024
  • 수질 환경의 중요성이 강조되고 있는 가운데 광주광역시 도시 하천의 수질개선을 위한 수질 지표는 수생 생태계에 영향을 미치는 중요한 요소로 정확한 예측이 필요하다. 본 연구에서는 XGBoost와 LightGBM 머신러닝 알고리즘을 활용하여 광주천의 중요한 지점인 하류 평촌교(PyeongchonBr)와 상류 방학교(BangHakBr_Gwangjucheon1) 수계의 수질 검사 항목 중 통계적 검증 결과 유의미한 항목인 질소(TN), 질산염(NO3), 암모니아 양(NH3) 세 가지 수질 지표를 예측하는 연구를 수행하였고, 회귀 모델 평가 지표인 RMSE를 이용하여 예측 모델의 성능을 평가하였다. 수계별 개별적인 모델을 구현하여 교차 검증 후 성능을 비교한 결과, XGBoost 모델이 뛰어난 예측 능력을 보였다