• Title/Summary/Keyword: XGB

Search Result 31, Processing Time 0.021 seconds

Numerical data-driven machine learning model to predict the strength reduction of fire damaged RC columns

  • HyunKyoung Kim;Hyo-Gyoung Kwak;Ju-Young Hwang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.625-637
    • /
    • 2023
  • The application of ML approaches in determining the resisting capacity of fire damaged RC columns is introduced in this paper, on the basis of analysis data driven ML modeling. Considering the characteristics of the structural behavior of fire damaged RC columns, the representative five approaches of Kernel SVM, ANN, RF, XGB and LGBM are adopted and applied. Additional partial monotonic constraints are adopted in modelling, to ensure the monotone decrease of resisting capacity in RC column with fire exposure time. Furthermore, additional suggestions are also added to mitigate the heterogeneous composition of the training data. Since the use of ML approaches will significantly reduce the computation time in determining the resisting capacity of fire damaged RC columns, which requires many complex solution procedures from the heat transfer analysis to the rigorous nonlinear analyses and their repetition with time, the introduced ML approach can more effectively be used in large complex structures with many RC members. Because of the very small amount of experimental data, the training data are analytically determined from a heat transfer analysis and a subsequent nonlinear finite element (FE) analysis, and their accuracy was previously verified through a correlation study between the numerical results and experimental data. The results obtained from the application of ML approaches show that the resisting capacity of fire damaged RC columns can effectively be predicted by ML approaches.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

Developing a regional fog prediction model using tree-based machine-learning techniques and automated visibility observations (시정계 자료와 기계학습 기법을 이용한 지역 안개예측 모형 개발)

  • Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1255-1263
    • /
    • 2021
  • While it could become an alternative water resource, fog could undermine traffic safety and operational performance of infrastructures. To reduce such adverse impacts, it is necessary to have spatially continuous fog risk information. In this work, tree-based machine-learning models were developed in order to quantify fog risks with routine meteorological observations alone. The Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Random Forests (RF) were chosen for the regional fog models using operational weather and visibility observations within the Jeollabuk-do province. Results showed that RF seemed to show the most robust performance to categorize between fog and non-fog situations during the training and evaluation period of 2017-2019. While the LGB performed better than in predicting fog occurrences than the others, its false alarm ratio was the highest (0.695) among the three models. The predictability of the three models considerably declined when applying them for an independent period of 2020, potentially due to the distinctively enhanced air quality in the year under the global lockdown. Nonetheless, even in 2020, the three models were all able to produce fog risk information consistent with the spatial variation of observed fog occurrences. This work suggests that the tree-based machine learning models could be used as tools to find locations with relatively high fog risks.

Prediction of Track Quality Index (TQI) Using Vehicle Acceleration Data based on Machine Learning (차량가속도데이터를 이용한 머신러닝 기반의 궤도품질지수(TQI) 예측)

  • Choi, Chanyong;Kim, Hunki;Kim, Young Cheul;Kim, Sang-su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • There is an increasing tendency to try to make predictive analysis using measurement data based on machine learning techniques in the railway industries. In this paper, it was predicted that Track quality index (TQI) using vehicle acceleration data based on the machine learning method. The XGB (XGBoost) was the most accurate with 85% in the all data sets. Unlike the SVM model with a single algorithm, the RF and XGB model with a ensemble system were considered to be good at the prediction performance. In the case of the Surface TQI, it is shown that the acceleration of the z axis is highly related to the vertical direction and is in good agreement with the previous studies. Therefore, it is appropriate to apply the model with the ensemble algorithm to predict the track quality index using the vehicle vibration acceleration data because the accuracy may vary depending on the applied model in the machine learning methods.

A Study on the Prediction of CNC Tool Wear Using Machine Learning Technique (기계학습 기법을 이용한 CNC 공구 마모도 예측에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Sung, Sangha;Park, Domyoung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.15-21
    • /
    • 2019
  • The fourth industrial revolution is noted. It is a smarter factory. At present, research on CNC (Computerized Numeric Controller) is actively underway in the manufacturing field. Domestic CNC equipment, acoustic sensors, vibration sensors, etc. This study can improve efficiency through CNC. Collect various data such as X-axis, Y-axis, Z-axis force, moving speed. Data exploration of the characteristics of the collected data. You can use your data as Random Forest (RF), Extreme Gradient Boost (XGB), and Support Vector Machine (SVM). The result of this study is CNC equipment.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

Automatic COVID-19 Prediction with Optimized Machine Learning Classifiers Using Clinical Inpatient Data

  • Abbas Jafar;Myungho Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.539-541
    • /
    • 2023
  • COVID-19 is a viral pandemic disease that spreads widely all around the world. The only way to identify COVID-19 patients at an early stage is to stop the spread of the virus. Different approaches are used to diagnose, such as RT-PCR, Chest X-rays, and CT images. However, these are time-consuming and require a specialized lab. Therefore, there is a need to develop a time-efficient diagnosis method to detect COVID-19 patients. The proposed machine learning (ML) approach predicts the presence of coronavirus based on clinical symptoms. The clinical dataset is collected from the Israeli Ministry of Health. We used different ML classifiers (i.e., XGB, DT, RF, and NB) to diagnose COVID-19. Later, classifiers are optimized with the Bayesian hyperparameter optimization approach to improve the performance. The optimized RF outperformed the others and achieved an accuracy of 97.62% on the testing data that help the early diagnosis of COVID-19 patients.

Performance comparison between Decision tree model and TabNet for loan repayment prediction (대출 상환 예측을 위한 의사결정나무모델과 TabNet 간 성능 비교)

  • Sujin Han;Hyeoncheol Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.453-455
    • /
    • 2023
  • 본 연구는 은행에서 리스크 관리 자동화를 위해 고객의 대출 상환 여부 예측 모델을 제안하고자 한다. 예측 모델로 금융 데이터 같은 정형데이터에서 전통적으로 높은 성능을 보인 의사결정나무기반 모델 LightGBM, CatBoost, XGB 와 최근 제안된 정형데이터에서 사용할 수 있는 설명 가능한 딥러닝 기반 모델 TabNet 간의 성능 비교를 진행한다. 다만, 대출 상환 여부 데이터는 불균형 클래스 데이터로 구성되어있어 샘플링을 진행한다. SMOTE, Random Under Sampling, 혼합 방식을 비교해 가장 높은 성능의 샘플링 기법을 제안한다. 대출 상환 여부 예측 결과 TabNet 모델이 의사결정나무모델들보다 좋은 성능을 보여 정형데이터에서 의사결정나무 기반 모델을 딥러닝 모델이 대체 할 수 있는 가능성을 확인했다.

A Study on Classification of Crown Classes and Selection of Thinned Trees for Major Conifers Using Machine Learning Techniques (머신러닝 기법을 활용한 주요 침엽수종의 수관급 분류와 간벌목 선정 연구)

  • Lee, Yong-Kyu;Lee, Jung-Soo;Park, Jin-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.302-310
    • /
    • 2022
  • Here we aimed to classify the major coniferous tree species (Pinus densiflora, Pinus koraiensis, and Larix kaempferi) by tree measurement information and machine learning algorithms to establish an efficient forest management plan. We used national forest monitoring information amassed over nine years for the measurement information of trees, and random forest (RF), XGBoost (XGB), and light GBM (LGBM) as machine learning algorithms. We compared and evaluated the accuracy of the algorithm through performance evaluation using the accuracy, precision, recall, and F1 score of the algorithm. The RF algorithm had the highest performance evaluation score for all tree species, and highest scores for Pinus densiflora, with an accuracy of about 65%, a precision of about 72%, a recall of about 60%, and an F1 score of about 66%. The classification accuracy for the dominant trees was higher than about 80% in the crown classes, but that of the co-dominant trees, the intermediate trees, and the overtopper trees was evaluated as low. We consider that the results of this study can be used as reference data for decision-making in the selection of thinning trees for forest management.