• Title/Summary/Keyword: X8

Search Result 8,976, Processing Time 0.038 seconds

Crystal Structure of Antimony-sorbed Indium-exchanged Zeolite A (인디움 제올라이트 A의 안티몬 흡착과 결정구조)

  • Lim, Woo Taik;Lee, Hyun Su;Heo, Nam Ho
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.375-390
    • /
    • 2003
  • A single crystal of fully indium-exchanged zeolite A (In-A) was brought into contact with antimony in a fine Pyrex capillary at $350^{\circ}C$ for 6 days. The reaction was monitored by electron-probe X-ray microanalysis (EPXMA). The crystal structure of antimony-sorbed indium-exchanged zeolite A has been determined by single-crystal X-ray diffraction techniques at $21^{\circ}C$ in the cubic space group Pm ${\bar{3}}m$. The crystal structure of $In_8Si_{12}Al_{12}O_{48}{\cdot}(In)_{1.35}(Sb)_{0.7}$ ($a=12.111(2){{\AA}}$, $R_1=0.071$, and $R_2=0.067$) has 8 indium cations, 1.35 indium atoms, and 0.7 antimony atoms per unit cell. Unit cell 1 ($In_8-A{\cdot}In$, 65% of unit cells) contain the $(In_5)^{8+}$ cluster. In unit cell 2 ($In_8-A{\cdot}(In)_2(Sb)_2$, 35% of unit cells), two $(In_3)^{2+}$ cluster and one $(In_3Sb_2)^{7+}$ cluster are found in the large cavity.

Crystallographic and Magnetic Properties of $NdFe_{10.7}Ti_{1.3}$ ($NdFe_{10.7}Ti_{1.3}$의 결정학적 및 자기적 성질 연구)

  • 이승화;이용종;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.361-366
    • /
    • 1996
  • $NdFe_{10.7}Ti_{1.3}$ has been studied with X-ray diffraction, Mossbauer spectroscopy and vibrating sample magnet-ometer(VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha-Fe$, from X-ray and Mossbauer measurements. The $NdFe_{10.7}Ti_{1.3}$ has the $ThMn_{12}$-type tetragonal struc-ture with $a_{0}=8.607{\AA}\;and\;c_{0}=4.790{\AA}$. The Curie temperature ($T_c$) of the $NdFe_{10.7}Ti_{1.3}$ is 590 K from $M\"{o}ssbauer$ spectroscopy performed at various temperatures ranging from 13 to 800 K. Each spectrum below $T_c$ was fitted with six subspectra of Fe sites in the structure$(8i_{1},\;8i_{2},\;8j_{2},\;8j_{1},\;8f\;and\;{\alpha}-Fe)$. The area fractions of the subspectra at room temperature are 13.8%, 15.4%, 17%, 16.4%, 34.1% and 3.3%, respectively. Magenetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, isomer shift and magnetic moment observed at about 180 K in $NdFe_{10.7}Ti_{1.3}$ are attributed to spin reorientation.

  • PDF

Stydies on the Hexagonal Ferrites(II) The Nagnetostricton pf Ferroxplana $Co_{1-x}Zn_xZ$($BA_3Co_{2(1-x)}Zn_{2x} Fe_{24}O_{41}$)) (Hexagonal Ferrite 에 관한 연구(II) Ferroxplana $Co_{1-x}Zn_xZ$($BA_3Co_{2(1-x)}Zn_{2x} Fe_{24}O_{41}$)의 Magnetostriction)

  • 김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.4
    • /
    • pp.5-8
    • /
    • 1976
  • Both oriented and non-oriented ferroxplana $Co_{1-x}Zn_xZ(Ba_3Co_{2(1-x)}Zn_{2x} Fe_{24}O_{41})$ with x=0.00, 0.45 were prepared by conventional ceramic method. The magnetostrictions of thus prepared specimens were measured by use of the three terminal capacitor device at room temperature. The magnitude of measured values was approximately five times greater than that of ZnY ferroxplana. The easy-magnetization plane at room temperature of both CoZ and Co0.55 $Zn_{0.45}$Z was their basal plane. The magentostrictions in the basal plane and the other planes showed saturated values at magnetic field intensity of about 2Koe and 4Koe, respectively. The magnetostriction constants $K_1, \; K_2, \;K_3\; and\; K_4$ for CoZ were -2.4, -10.5, -5.9 and -45.2$\times10^{-6}$ , while those for $Co_{0.55}Zn_{0.45}Z$ were +0.1, -1.2, -6.3 and -39.0$\times$10^{-6}, , respectively.

  • PDF

Physical Properties of $Ba_{1-x}Sr_x(Mg{1/3}Nb_{2/3})O_3$Ceramics ($Ba_{1-x}Sr_x(Mg{1/3}Nb_{2/3})O_3$ 세라믹스의 물리적 특성)

  • 김부근;김재윤;김강언;정수태;조상희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.325-328
    • /
    • 1999
  • The physical and electrical properties of $\textrm{Ba}_1$ $_{x}\textrm{Sr}_{x}$($\textrm{Mg_{1/3}Nb_{2/3}}$)$\textrm{O}_3$ (x =0, 0.2, 0.4, 0.6, 0.8, 1.0) ceramics were investigated. The Bal $_{x}\textrm{Sr}_{x}$($\textrm{Mg_{1/3}Nb_{2/3}}$)$\textrm{O}_3$ systems were shown that the hexagonally ordered superlattices were increased with increasing x values. The relative densities of all samples were over 97% theoretical densities. The dc resistivities of samples were $10^{13}$ - $10^{14}$$\Omega\textrm{cm}$at room temperature, these values were nearly constant at 130(x=0)-$230^{\circ}C$ (x=l). However, the resistivities of samples decreased rapidly above those temperature and their activation energies were from 1.0 to 1.52 eV. The relative dielectric constant was 33(BMN) and 30.6(SMN) respectively. And the highest value was shown at x=0.4 and the value was 34.3. The temperature coefficient of dielectric constant was -61 ppm/$^{\circ}C$(BMN) and 79 ppm/$^{\circ}C$ (SMN) respectively.

  • PDF

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.103-112
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system ($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

  • PDF