• Title/Summary/Keyword: X-ray spectroscopy

Search Result 3,326, Processing Time 0.038 seconds

Investigation of Liquid Crystal Alignment on ion beam exposed polystyrene surface (이온빔을 조사한 폴리스타일렌 기판에서의 액정의 배향특성)

  • Hwang, Hyun Suk;Lee, Jong-Deok;Rho, Jungkyu;Han, Jeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimide material. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time.Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property.

Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios

  • Park, Ju-Yun;Lim, Kyoung-A;Ramsier, Rex D.;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3395-3399
    • /
    • 2011
  • Copper oxide thin films were synthesized by reactive radio frequency magnetron sputtering at different oxygen gas ratios. The chemical and physical properties of the thin films were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). XPS results revealed that the dominant oxidation states of Cu were $Cu^0$ and $Cu^+$ at 0% oxygen ratio. When the oxygen ratios increased above 5%, Cu was oxidized as CuO as detected by X-ray induced Auger electron spectroscopy and the $Cu(OH)_2$ phase was confirmed independent of the oxygen ratio. The valence band maxima were $1.19{\pm}0.09$ eV and an increase in the density of states was confirmed after formation of CuO. The thickness and roughness of copper oxide thin films decreased with increasing oxygen ratio. The crystallinity of the copper oxide films changed from cubic Cu through cubic $Cu_2O$ to monoclinic CuO with mean crystallite sizes of 8.8 nm (Cu) and 16.9 nm (CuO) at the 10% oxygen ratio level.

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck;Choi, Hee-Dong;Park, Jongho
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.778-784
    • /
    • 2016
  • HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

Charge Redistribution of Pt-based Alloys

  • Lim, K.Y.;Chung, Y.D.;Kwon, S.Y.;Lee, Y.S.;C.N.Whang;Y.Jeon;Park, B.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.171-171
    • /
    • 1999
  • We studied the charge redistribution in the Pt-M (M=Cu, Co) alloys by X-ray Absorption Near Edge Spectroscopy(XANES) and X-ray Photoelectron Spectroscopy(XPS). These analysis tools provide us information about the charge transfer in the valence band of intermetallic bonding. The samples were prepared by arc-melting method. After annealing this samples in vacuum for several hours, we cold get the ordered samples, which were confirmed with XRD analysis. the core and valence level energy shift in these system were investigated by Mg $K\alpha$(1253.6eV) x-ray source for Pt-Co alloys and monochromatized Al $K\alpha$ (1486.6eV) for Pt-Cu alloys. Pt L2, L3-edge, and Cu, Co K-edge XANES spectra were measured with the total electron-yield mode detector at the 3Cl beam line of the PLS (Pohang light source0. from the changes of White line (WL) area and the core level shifts of the each metal sites, we can obtain the information about the electrons participating in the intermetallic bonding of the Pt-Cu and Pt-Co alloys.

  • PDF

무전해 Ni도금박막 형성에 DMAB가 미치는영향

  • Kim, Hyeong-Cheol;Kim, Na-Yeong;Baek, Seung-Deok;Na, Sa-Gyun;Lee, Yeon-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.204.1-204.1
    • /
    • 2014
  • 스마트폰과 같은 통신기기 및 각종 전자제품에 있어 크기의 축소와 간소화 추세에 따라 인쇄회로기판(PCB)의 초미세회로설계 기술이 요구됨에 따라, 인쇄회로기판과 첨단 전자부품 사이의 접합 신뢰성을 향상시키기 위해 무전해 니켈 도금이 널리 사용되고 있다. 일반적으로, 무전해 Ni도금은 강산, 강염기성 용액을 이용하여 수행되고 있다. 따라서, 공정과정 중에 기판의 손상을 초래하기도 할뿐만 아니라, 환경적으로도 문제시 되고 있다. 본 연구에서는 친환경적 도금공정의 개발을 위해 중성에서 N-(B)무전해 도금을 시행하였다. 중성의 무전해 도금공정은 어떠한 기판을 사용하여도 기판의 손상없이 도금이 가능하다는 장점을 가지고 있고, Boron(B)은 Ni을 비정질화 시키는 물질로 알려져 있다. B가 첨가된 무전해 Ni도금 박막에 있어 B의 영향을 알아보기 위하여 중성조건에서 B를 포함한 DMAB의 첨가량을 조절하였다. Ni-(B) 무전해 도금 시 도금조의 온도는 $40^{\circ}C$로 하였고, 무전해 도금액의 pH는 7(중성)로 유지하였다. Cu Foil기판을 사용하여 DMAB의 양에 따라 성장된 Ni-B무전해 도금 박막의 특성을 분석하기 위해 X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Optical microscope (OM), X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS)을 이용하였다.

  • PDF

Growth environments depends interface and surface characteristics of yttria-stabilized zirconia thin films

  • Bae, Jong-Seong;Park, Su-Hwan;Park, Sang-Sin;Hwang, Jeong-Sik;Park, Seong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.309-309
    • /
    • 2011
  • There have been large research activities on the high quality oxide films for the realization oxide based electronics. However, the interface interdiffusion prohibits achieving high quality oxide films, when the oxide films are grown on non-oxide substrates. In the case of Si substrates, there exist lattice mismatch and interface interdiffusion when oxide films deposited on direct Si surface. In this presentation, we report the interface characteristics of yttria-stabilized zirconia films grown on silicon substrates. From x-ray reflectivity analysis we found that the film thickness and interface roughness decreased as the growth temperature increased, indicating that the growth mechanism varies and the chemical reaction is limited to the interface as the growth condition varies. Furthermore, the packing density of the film increased as the growth temperature increased and the film thickness decreased. X-ray photoelectron spectroscopy analysis of very thin films revealed that the amount of chemical shift increased as the growth temperature increased. Intriguingly, the direction of the chemical shift of Zr was opposite to that of Si due to the second nearest neighbor interaction.

  • PDF

Room Temperature Ferromagnetism on Co and Fe Doped Multi-wall Carbon Nano-tube

  • Chae, K.H.;Gautam, S.;Yu, B.Y.;Song, J.H.;Augustine, S.;Kang, J.K.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.171-171
    • /
    • 2011
  • Co and Fe doped multi-wall carbon nano-tubes (MWCNTs) synthesized by microwave plasma enhanced chemical vapor deposition (PECVD) technique are investigated with synchrotron radiations at Pohang Light Source (PAL) and European Synchrotron Radiation Facility (ESRF). Near edge x-ray absorption spectroscopy (NEXAFS) measurement at C K, Co $L_{3,2}$ and Fe $L_{3,2}$-edges, and x-ray magnetic circular dichroism (XMCD) at Co and Fe $L_{3,2}$-edges have been carried at 7B1 XAS KIST and 2A MS beamline, respectively, to understand the electronic structure and responsible magnetic interactions at room temperature. X-ray absorption spectroscopy (XAS) at C K-edge shows significant p-bonding and Co and Fe L-edges proves the presence of $Co^{2+}$ and $Fe^{2+}$ in octahedral symmetry. Co and Fe doped MWCNTs show good XMCD spectra at 300K. The effect on the magnetism is also studied through swift heavy ion (SHI) radiations and magnetism is found enhanced and change in the electronic structure in Co-CNTs is investigated.

  • PDF

The Synergistic Effect of Nitrogen and Ni2O3 over TiO2 Photocatalyst in the Degradation of 2,4,6-Trichlorophenol Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4052-4058
    • /
    • 2012
  • The composite photocatalyst, N-$TiO_2$ loaded with $Ni_2O_3$, was prepared by $N_2$ plasma treatment. X-ray diffraction, X-ray fluorescence, $N_2$ adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The results indicated that the band gap energy was decreased obviously by nitrogen doping, whereas loading of $Ni_2O_3$ did not influence the band gap and visible light absorption. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. The photocatalytic activity and stability of composite photocatalyst were much higher than that of catalyst modified with nitrogen or $Ni_2O_3$ alone. The synergistic effect of doping nitrogen and $Ni_2O_3$ over $TiO_2$ was investigated.

CORROSION BEHAVIOR OF AUSTENITIC AND FERRITIC STEELS IN SUPERCRITICAL WATER

  • Luo, Xin;Tang, Rui;Long, Chongsheng;Miao, Zhi;Peng, Qian;Li, Cong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.147-154
    • /
    • 2008
  • The general corrosion behavior of austenitic and ferritic steels(316L, 304, N controlled 304L, and 410) in supercritical water is investigated in this paper. After exposure to deaerated supercritical water at $480^{\circ}C$/25 MPa for up to 500 h, the four steels studied were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS), X-ray photoelectron spectroscopy(XPS), and X-ray diffraction(XRD). The results show that the 316L steel with a higher Cr and Ni content has the best corrosion-resistance performance among the steels tested. In addition to the oxide layer mixed with $Fe_{3}O_{4}$ and $(Fe,Cr)_{3}O_{4}$ that formed on all the samples, a $Fe_{3}O_{4}$ loose outer layer was observed on the 410 steel. The corrosion mechanism of stainless steels in supercritical water is discussed based on the above results.

Effects of Sputter Parameters on Electrochromic Properties of Tungsten Oxide Thin Films Grown by RF Sputtering

  • Nah, Yoon-Chae
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.703-707
    • /
    • 2011
  • The electrochromic properties of tungsten oxide films grown by RF sputtering were investigated. Among the sputter parameters, first the $Ar:O_2$ ratios were controlled with division into only an $O_2$ environment, 1:1 and 4:1. The structure of each film prepared by these conditions was studied by X-ray diffraction, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. The sputter-deposited tungsten oxide films had an amorphous structure regardless of the $Ar:O_2$ ratios. The chemical compositions, however, were different from each other. The stoichiometric structure and low-density film was obtained at higher $O_2$ contents. Electrochemical tests were performed by cyclic voltammetry and chronoamperometry at 0.05 M $H_2SO_4$ solutions. The current density and charge ratio was estimated during the continuous potential and pulse potential cycling at -0.5 V and 1.8 V, respectively. The film grown in a higher oxygen environment had a higher current density and a reversible charge reaction during intercalation and deintercalation. The in-situ transmittance tests were performed by He-Ne laser (633 nm). At higher oxygen contents, a big transmittance difference was observed but the response speed was too slow. This was likely caused by higher film resistivity. Furthermore, the effect of sputtering pressure was also investigated. The structure and surface morphology of each film was observed by X-ray diffraction and scanning electron microscopy. A rough surface was observed at higher sputtering pressure, and this affected the higher transmittance difference and coloration efficiency.