• Title/Summary/Keyword: X-ray microscope

Search Result 1,446, Processing Time 0.035 seconds

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

Biosorption of Heavy Metal in Aqueous Solution by Heavy Metal Tolerant Microorganism Isolated from Heavy Metal Contaminated Soil (중금속으로 오염된 토양에서 분리한 중금속 내성 미생물의 수용액내 중금속 흡착)

  • Kim, Sung-Un;Choi, Ik-Won;Seo, Dong-Cheol;Han, Myung-Hoon;Kang, Byung-Hwa;Heo, Jong-Soo;Shon, Bo-Kyoon;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2005
  • This study was conducted to find out a useful bioremediation technology for heavy metal contaminated soil and water. We isolated strain CPB from heavy metal contaminated soil and evaluated the tolerance level and adsorption capacity of strain CPB to heavy metals (Strain is not determined yet). Strain CPB showed variable tolerance limit to different kinds heavy metal or concentrations of heavy metals. The growth of strain CPB was significantly inhibited by mixed heavy metals (Cd+Cu+Pb+Zn) than that of by single heavy metal. Strain CPB showed high binding capacity with Pb (Pb>Cd>Cu>Zn). In general, strain CPB showed high uptake of heavy metals such as Pb, Cd and Cu. It was observed that the capacity of heavy metal uptake from mixture of heavy metals was reduced in comparison with single heavy metal treatment. But total contents of heavy metal bound with cell in mixed heavy metal showed higher than in single heavy metal treatment. Heavy metal adsorption in cells was affected by several external factors, such as temperature and pH etc.. The optimum temperature and pH of the adsorption of heavy metal into cells were ca. $25{\sim}35^{\circ}C$ and pH ca. $5{\sim}7$, respectively. A large number of the electron dense particles were found mainly on the cell wall and cell membrane fractions, which was determined by transmission electron microscope. Energy dispersive X-ray spectroscopy revealed that the electron dense particles were the heavy metal complexes the substances binding with heavy metals.

A Study on the Electromigration Characteristics in Ag, Cu, Au, Al Thin Films (Ag, Cu, Au, Al 박막에서 엘렉트로마이그레이션 특성에 관한 연구)

  • Kim, Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to less than $0.25{\mu}m$, which results in high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in Ag, Cu, Au, and Al thin films, etc. EM resistance characteristics of Ag, Cu, Au, and Al thin films with high electrical conductivities were investigated by measuring the activation energies from the TTF (Time-to-Failure) analysis. Optical microscope and XPS (X-ray photoelectron spectroscopy) analysis were used for the failure analysis in thin films. Cu thin films showed relatively high activation energy for the electromigration. Thus Cu thin films may be potentially good candidate for the next choice of advanced thin film interconnection materials where high current density and good EM resitance are required. Passivated Al thin films showed the increased MTF(Mean-time-to-Failure) values, that is, the increased EM resistance characteristics due to the dielectric passivation effects at the interface between the dielectric overlayer and the thin film interconnection materials.

Preparation of PAN Nanofiber Composite Membrane with $Fe_3O_4$ Functionalized Graphene Oxide and its Application as a Water Treatment Membrane (산화철이 기능화된 산화그래핀을 함유한 PAN 나노섬유 복합분리막의 제조 및 수처리용 분리막으로의 활용)

  • Jang, Wongi;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • In this study, the nanofiber composite membrane was prepared by electrospinning method with poly (ancrylonitrile) (PAN) and a dispersed solution of graphene oxide (GO) and $Fe_3O_4$ functionalized graphene oxide (M-GO) in dimethyl formamide (DMF). The pore-diameter of prepared membranes was controlled by change of those layers. It was confirmed with SEM that the nanofiber composite membranes having fiber size of 500 nm were prepared. It was found with Raman spectroscopy and EDS that GO and M-GO were well dispersed on those membranes. Final nanofiber composite membrane showed the similar pore properties ($0.21{\sim}0.24{\mu}m$/pore-size, 40% porosity) with the commercial membrane ($0.27{\mu}m$/pore-size, 55% porosity) and their water-flux results also showed the 200% higher flux than its PAN membrane. From these results, it was expected that the nanofiber composite membrane prepared by electrospinning method could be utilized as a water-treatment membrane.

A Study of Conservation and Desalination Methods for an Iron Stele of the Joseon Dynasty (조선시대 철비(鐵碑)의 보존처리와 탈염방법 비교 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.399-409
    • /
    • 2009
  • Outdoor iron artefacts are easily corroded by affection of environmental pollutants directly. Especially they need to be removed $Cl^-$ ions, but outdoor iron artefacts are excluded for desalination owing to their special features. Therefore this study contains the conservation processes of an iron stele of the Joseon Dynasty as the sample as well as desalination experiments that were carried out the desalting method using spill pads and the immersion desalting method together in order to compare. Desalting methods were compared by analyses such as an optical and metallurgical microscope, SEM-EDS, pH meter, Ion Chromatography and X-ray diffraction. As a result of the analysis, the optical and metallurgical microscopy show that the corrosion products are constituted by the layers and the metallurgical microstructure is a white cast iron. The SEM-EDS results of corrosion products detected mainly Fe, O, and especially Cl upto 2.48wt%. The results of pH and anion analysis for the washing solution, the desalting method using spill pads shows the similar effect to the immersion desalting method. As a result of XRD analysis before and after desalting corrosion products, goethite, magnetite, lepidocrocite and akaganeite are detected before desalting, but akaganeite is not detected after desalting at the desalting methode using spill pads, which indicates to have an effect on desalination. Therefore the results show that the desalting method using spill pads has an effect on desalination similar to the immersing desalting method.

  • PDF

The Current Quality Control and State of Scorched Particles in Infant formula in Korea (한국 조제분유의 초분 관리 실태 및 현황)

  • Jeon, Jeong-Wook;Juhn, Seok-Lak;Chun, Ho-Nam;Yun, Sung-Seob
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Contents of scorched particles in infant formula were studied to provide a scientific evidence for standardization of Food Regulation in Korea. The specification of scorched particles in infant formula in Korea was satisfied with CODEX, USDA and so on. But food regulations for scorched particles in baby food are not mentioned in Korea. Nowadays social interests of scorched particles in infant formula are being increased in the respect of safety for baby food. The composition and contents of scorched particles were analyzed with Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer(SEM-EDS) and Inductively Coupled Plasma Mass Spectrometer(ICP-MS). The results indicate that the scorched particles consist Ca, Na, Fe, Mg and trace elements derived from the ingredient of infant formula. Infant formula are composed of milk, skimmed milk, whey, mixed vegetable oils, minerals and vitamins. These results also show that the contents of scorched particles of infant formula in Korea are little or similar level to those reported in other countries. In general, heavy metals derived from scorched particle are originally used as a source of minerals in infant formula. And it has been thought that they doesn't effect on Provisional Tolerable Weekly Intake set by FAO/WHO for contents and composition of scorched particles.

  • PDF

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Microstructure Characterization on Nano-thick Nickel Cobalt Composite Silicide on Polycrystalline Substrates (다결정 실리콘 기판 위에 형성된 나노급 니켈 코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/70 w-Poly-Si/200 $nm-SiO_2/Si$ and $10nm-Ni_{0.5}Co_{0.5}/70$ nm-Poly-Si/200 $nm-SiO_2/Si$ structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required fur annealing. Silicides underwent rapid anneal at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of the polycrystalline silicon substrate mimicking the gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profile scope were employed for the determination of cross sectional microstructure and thickness. 20nm thick nickel cobalt composite silicides on polycrystalline silicon showed low resistance up to $900^{\circ}C$, while the conventional nickle silicide showed low resistance below $900^{\circ}C$. Through TEM analysis, we confirmed that the 70nm-thick nickel cobalt composite silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. We identified $Ni_3Si_2,\;CoSi_2$ phase at $700^{\circ}C$ using an X-ray diffractometer. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo composite silicide from NiCo alloy films process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

  • PDF

Characterization and Improvement of Dissolution Rate of Solid Dispersion of Celecoxib in PVP K30/Eudragit EPO (PVP K30/Eudragit EPO에 의한 셀레콕시브 고체분산체의 용출률 향상 및 특성)

  • Jeon, Dae Yeon;Jang, Ji Eun;Lee, Jeong Hwan;Yang, Jae Won;Park, Sang Mi;Lim, Dongkwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.434-440
    • /
    • 2014
  • We prepared nanoparticles containing insoluble celecoxib by the method of solid dispersions using a spray dryer to improve solubility of celecoxib. We used PVP K30 and Eudragit EPO as water-soluble carriers for the solid dispersion, and poloxamer 407 as a surfactant. Characterization of celecoxib solid dispersion was performed by scanning electron microscope (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The results of SEM, DSC and XRD demonstrated that celecoxib is amorphous in solid dispersion. The dissolution rate measured in intestinal juice showed that the method of solid dispersion improved celecoxib solubility as compared with a conventional drug (Celebres$^{(R)}$). In conclusion, solid dispersion formulation prepared by a spray dryer would improve the solubility of celecoxib in oral administration.

The Study on the Crystal Growing of Mn-Zn Ferrite Single Crystals by Floating Zone Method (Floating Zone법에 의한 Mn-Zn Ferrite 단결정성장에 관한 연구)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.10-19
    • /
    • 1992
  • Mn - Zn Ferrite has physical properties of the high initial permeability, saturation magnetic flux density, and low loss factor as a representative magnetic material of soft ferrites, in addition the mechanical property is excellent as a single crystal. Therefore it is important electronic components and used for VTR Head. Mn - Zn Ferrite single crystals with the diameter 8mm were grown in atmosphere mixed with $O_2$ and Ar gas by the Floating Zone(FZ) method that impurities can not be incorporated to the crystals because of not-using the crucible to put in the melt, and the sharp temperature gradient results from making a focus at one point utilizing the infrared ray emitted from the halogen lamp as a heat source. During the crystal growing, the highest temperature of melting area was maintained to be $1650^{\circ}C$, growth rate and rotation rate were 10 mm/hr, 20 rpm respectively. The phases and the growth directions of crystals were determined from the analysis of X RD patterns, Laue, TEM diffraction patterns and etch pit shapes were observed by the optical microscope through the chemical etching. The corelation of optimum conditions for acquiring the better crystals was found out with the growth rate, the length and diameter of melt at the interface according to the diameter of feed rod, and the patterns of growing interface also studied.

  • PDF