• 제목/요약/키워드: X-ray energy dispersive spectroscopy

검색결과 643건 처리시간 0.03초

화염법을 이용한 Pt/C 촉매 제조 (Pt Coating on Flame-Generated Carbon Particles)

  • 최인대;이동근
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.116-123
    • /
    • 2009
  • Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission electron microscopy (TEM), Energy-dispersive spectra (EDS) and X-ray diffraction (XRD). Crystalinity and surface bonding groups of carbon are investigated through X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

Surface Characteristics of Hydroxyapatite Coated Surface on Nano/Micro Pore Structured Ti-35Ta-xNb Alloys

  • Jo, Chae-Ik;Choe, Han-Choel
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.185-185
    • /
    • 2014
  • In this study, we investigated surface characteristics of hydroxyapatite coated surface on nano/micro pore structured Ti-35Ta-xNb alloys. This paper was focus on morphology and corrosion resistance of Anodic oxidation. To prepare the samples, Ti-35Ta-xNb (x= 0, 10 wt. %) alloys were manufactured by arc melting and heat-treated for 12 h at $1050^{\circ}C$ in Ar atmosphere at $0^{\circ}C$ water quenching. Micro-pore structured surface was performed using anodization with a DC power supply at 280 V for 3 min, nanotube formed on Ti-35Ta-xNb alloys was performed using DC power supply at 30 V in 60 min at room temperature. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

  • PDF

CdTe 태양전지 제조 공정에 따라 변화하는 CdS와 CdTe 박막의 물성 변화 분석 (The Analysis of CdS and CdTe Thin Film at the Processes of Manufacturing CdTe Solar Cells)

  • 천승주;정영훈;최수영;탁성주;김지현;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.106.2-106.2
    • /
    • 2011
  • 다층 박막 구조로 이루어진 CdS/CdTe 태양전지의 경우, 각각의 박막이 다양한 제조 공정을 거치면서 물성특성의 변화를 겪게 된다. 각각의 박막이 고온의 열처리 공정과, $CdCl_2$ 용액 처리 및 후면 산화막 제거 공정 등을 거치게 되면서 겪게 되는 물성 변화 분석을 살펴보고자 한다. 각각의 박막 제조 방식은 일반적으로 사용되는 방식으로, CdS의 경우는 용액성장법(Chemical Bath Deposition, CBD), CdTe의 경우는 근접승화법(Closed Space Sublimaition, CSS)을 사용했으며, X-Ray Diffractometer (XRD), Raman spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) 등을 이용하여 분석하였다. 각각의 셀 제조 공정을 거치면서 CdS, CdTe 박막들은 결정, 광 특성, 성분 변화를 보였다.

  • PDF

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis

  • Reyes, Odin;Sanchez, Monica F.;Pal, Mou;Llorca, Jordi;Sebastian, P.J.
    • Advances in nano research
    • /
    • 제5권3호
    • /
    • pp.203-214
    • /
    • 2017
  • In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

새로운 히드라존에 의한 염화물 오염 합성 콘크리트 공극 솔루션에서 철근의 부식 억제에 대한 통찰력 (Insights into the corrosion inhibition of steel rebar in chloride-contaminated synthetic concrete pore solutions by a new hydrazone)

  • 하산 르가즈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2022
  • A new hydrazone derivatives namely (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HIND) has been confirmed for mitigating the corrosion of the steel rebar exposed to chloride contaminated synthetic concrete pore solution (ClSCPS). The mitigation of corrosion properties has been characterized by weight loss and electrochemical methods (Electrochemical impedance, Potentiodynamic polarization studies) as well as surface observations. The presence of HIND in the ClSCPS decreased the corrosion of steel rebar by adsorption of HIND molecules on the surface of the steel rebar. The optimal HIND concentration was 0.5 mmol/L, corresponding to an inhibition efficiency of 88.4%. The use of HIND enables the corrosion process to have a higher energy barrier. X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) spectroscopy interpretations confirmed that HIND mitigates the corrosion attack on the surface steel rebar.

  • PDF

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Surface Characterization of Zinc Selenide Thin Films Obtained by RF co-sputtering

  • Lee, Seokhee;Kang, Jisoo;Park, Juyun;Kang, Yong-Cheol
    • 대한화학회지
    • /
    • 제66권5호
    • /
    • pp.341-348
    • /
    • 2022
  • In this work, radio frequency magnetron sputtering was used to deposit zinc selenide thin films on p-type silicon (100) wafers and glass substrates in a high vacuum chamber. Several surface characterization instruments were implemented to study the thin films. X-ray photoelectron spectroscopy results revealed that oxidized Zn bound to Se (Zn-Se) at 1022.7 ± 0.1 eV becomes the dominant oxidized species when Se concentration exceeds 70%. Scanning electron microscopy coupled with energy dispersive spectroscopy showed that incorporating Se in Zn thin films will lead to formation of ZnSe grains on the surface. Contact angle measurements indicated that ZnSe-60 exhibited the lowest total surface free energy value of 24.94 mN/m. Lastly, ultraviolet-visible spectrophotometry and ultraviolet photoelectron spectroscopy data evinced that the energy band gap gradually increases with increasing Se concentration with ZnSe-70 having the highest work function value of 4.91 eV.

Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation

  • Ali, Asghar;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.502-507
    • /
    • 2015
  • We examined the photo catalytic activity and catalytic recyclability of CdSe/graphene nanocomposites fabricated via modified hydrothermal technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Raman spectroscopic analysis, and X-ray photoelectron spectroscopy (XPS). The photocatalytic behavior was investigated through decomposition of RBB as a standard dye under visible light radiation. Our results indicate that there is significant potential for graphene based semiconductor hybrids materials to be used as photocatalysts under visible light irradiation for the degradation of organic dyes from industry effluents.

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • ;;김지순;강태훈;김진천;권영순
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF