• Title/Summary/Keyword: X-ray dose meter

Search Result 38, Processing Time 0.019 seconds

Analysis of Space Radiation Dose Rate using portable X-ray Generating Device for Abdomen (이동형 X-ray 발생장치를 이용한 복부 촬영 시 공간 선량률에 관한 연구)

  • Park, Chang-Hee
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • This experimental study is carried out one of the General Hospital in Kyungbok providence. Abdomen Phantom being located Anterior-posterior(AP) position on portable bed, and the portable X-ray generating device was placed the phantom at $-90^{\circ}$ direction. The experiment were set 65 kVp, 10 mAs, $10{\times}10\;cm^2$, 100 cm(FOD) for the measurement. Digital proportional counting tube survey meter was used for measuring the space scatter dose. Measurement points of horizontal distribution was set up at $30^{\circ}$ interval by increasing 50 cm radius of upside, downside, left and right. Vertical distribution of measurement points were set up for the vertical plane with a radius of at $30^{\circ}$ intervals with 50cm increments. It is concluded that longer distance from the soure of X-ray significantly decrease radiation dose to the patient and use of the radiation protection device should be applied in clinical practice to reduce dose to the patient.

  • PDF

The Bone Mineral Density Value According to the Operating Time of the Dual Energy X-ray (이중 에너지 엑스레이 흡수기의 가동 시간에 따른 골밀도 값의 평가)

  • Lee, Hae-Jung;Kim, Ho-Sung;Kim, Eun-Hye
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Purpose: Recently, the performance of the X-ray tube was very much improved by the power generation of the technology. However, the overload of equipment is occurred by the increment of the equipment operating time according to the increment of the examination number of cases. The X-ray dose can change by heat occurrence of the X-ray tube due to this. Moreover, the change of the bone mineral density value is possible to occur. Therefore, We tries to whether the change of the bone mineral density value of each equipment according to the difference of the examination number of cases and operating time occur or not. Materials and Methods: The BMD value was measured by the Aluminum Spine Phantom and the European Spine Phantom in each equipment, in order to find out about the difference of the time general classification bone mineral density value by using the Dual energy X-ray absorptiometry. And after scanning each phantom by using X-ray dose meter (Unfors Mult-O-Meter), a dose was measured by the same condition. As to, an average and standard deviation were found and the change of each equipment much BMD value was compared and it evaluated. Results: $Mean{\pm}SD$ of each equipment by using the Aluminum Spine Phantom, A equipment was $1.174{\pm}0.002$, $1.171{\pm}0.005$, $1.173{\pm}0.005$, B equipment was $1.186{\pm}0.003$, $1.187{\pm}0.003$, $1.185{\pm}0.003$, C equipment was $1.180{\pm}0.003$, $1.182{\pm}0.004$, $1.183{\pm}0.002$, D equipment was $1.188{\pm}0.004$, $1.185{\pm}0.003$, $1.185{\pm}0.004$. By using the European Spine Phantom, A equipment was $1.143{\pm}0.006$, $1.153{\pm}0.009$, $1.161{\pm}0.003$, B equipment was $1.134{\pm}0.004$, $1.13{\pm}0.008$, $1.127{\pm}0.015$, C equipment was $1.143{\pm}0.006$, $1.134{\pm}0.01$, $1.133{\pm}0.006$, D equipment was $1.14{\pm}0.001$, $1.122{\pm}0.002$, $1.131{\pm}0.008$, altogether included in the normal range. Conclusion: There was no significant change of the BMD value of using a phantom by time zones. Therefore, if the quality control is made to use the extent management method of the equipment for beginning in the present application, the reliability of the BMD equipment will be able to be enhanced.

  • PDF

Evaluation and Analysis of Scattered Radiation Dose according to Factors in General X-ray Examination (일반엑스선영상검사의 인자에 따른 산란방사선량 평가 및 분석)

  • Dong-Kyung Jung;Myeong-Hwan Park;Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Control of scattered radiation is one of very important factors in the use of medical radiation. In general X-ray exam, the causes, measurement methods, and the kind of detectors of scattered rays within the radiation area are diverse. In this study, the dose of scattered ray was measured by changing the thickness of the polycarbonate phantom and the tube voltage. As a result of measurement of scattered radiation, the results show that the scattered dose significantly(p<.05) increased with growing of thickness of phantom in the tube voltage 40, 50 and 60 kVp(F(p)<.05, R2>64%). As tube voltage increased at all phantom thicknesses, the scattered dose also significantly(p<.05) increased(F(p)<.05, R2>69%). In cases where a significant correlation was shown, the coefficient of determination of more than 60% was shown in regression analysis. The results of this study can be used as data on scattered radiation dose according to the tube voltage and the object thickness in general X-ray imaging exam.

Performance Evaluation of Domestic Prototype Dose Area Product Meter SFT-1 (국산 프로토타입 면적선량계 SFT-1의 성능평가)

  • Lee, Ho-Sun;Han, Seong-Gyu;Roh, Young-Hoon;Lim, Hyun-Jong;Kim, Jung-Min;Kim, Jong-Uk;Chae, Hyun-Sik;Yoon, Yong-Su
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.435-441
    • /
    • 2016
  • The importance of radiation dose display of medical X-ray equipment was emphasized, while third edition of IEC(International Electrotechnical Commission) 60601 started to apply. The existing medical X-ray equipment selected a method for attaching the DAP(Dose Area Product) meter when the dose display. However, because the DAP meter was dependent on all of the income, And it did not yet produced in Korea. So, we received the support of Seoul R&BD Program(Grants No. C1152055) to produce DAP meter prototype of the Domestically technology. In this study, the performance of this prototype was evaluated by comparing the German company's product Evaluation item was an electronic capture performance, radiation dose dependence, radiation quality dependence, energy transmittance, repeatability, light transmittance of 6 entries. And IEC 60580 was based on this evaluation. Evaluation results were electronic capture performance intrinsic error 9.5%, radiation dose dependence limits of variation 1%, repeatability coefficient of variation 2%, energy transmittance 91% each assessment was passed. However radiation quality dependence limits of variation 29%, light transmittance 55% was less than acceptance criteria.

Spatial dose distribution and exposure dose during lumbar lateral test (요추 측면 검사 시 공간선량 분포와 피폭선량)

  • Kim, Chang-Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • During the lateral x-ray testing of lumbar, in order to obtain the optimal image for diagnosis and to minimize the exposure dose, a glass dosimeter and spatial dose measuring meter was used to measure and evaluate the exposure dose and spatial dose distribution of each organs. The exposure dose of the organs have increased as they were closer to the X-ray tube and when the radiation field was completely opened, the exposure dose was increased. In addition, scattered rays have increased as the distance got closer to the subject and with the distance of more than 200cm, 95% of scattered rays was reduced. Such results can anticipate the exposure dose of patients during the lumbar x-ray test in the future and it can be proposed as a data for determining the testing methods and expected to be widely used as an important basic data for reducing the medical exposure dose.

Development of DAP(Dose Area Product) for Radiation Evaluation of Medical and Industrial X-ray generator (의료 및 산업용 X-선 발생장치의 선량평가를 위한 면적선량계(DAP) 개발)

  • Kwak, Dong-Hoon;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.495-498
    • /
    • 2018
  • In this paper, we propose an DAP system for dose evaluation of medical and industrial X-ray generator. Based on the DAP measurement technique using the Ion-Chamber, the proposed system can clearly measure the exposure radiation dose generated by the diagnostic X-ray apparatus. The hardware part of the DAP measures the amount of charge in the air that is captured by an X-ray. The high-speed processing algorithm part for cumulative radiation dose measurement through microcurrent measures the amount of charge captured by X-ray at a low implementation cost (power) with no input loss. The wired/wireless transmission/reception protocol part synchronized with the operation of the X-ray generator improves communication speed. The PC-based control program part for interlocking and aging measures the amount of X-ray generated in real time and enables measurement graphs and numerical value monitoring through PC GUI. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, the measured values using DAP increased linearly in each energy band (30, 60, 100, 150 kV). In addition, since the standard deviation of the measured value at the point of 4 division was ${\pm}1.25%$, it was confirmed that the DAP showed uniform measurements regardless of location. It was confirmed that the normal operation was not less than ${\pm}4.2%$ of the international standard.

A Study on the Safety of a Screening X-ray Laboratory Using Containers in accordance with the COVID 19 Outbreak (COVID 19 유행에 따른 컨테이너를 이용한 선별 X-선 검사실의 안전성에 대한 고찰)

  • Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.425-431
    • /
    • 2020
  • When a radiation generating device is installed in an export container due to COVID-19, the purpose of this study was to measure the space dose in the radiation room and to study the effectiveness of the shielding wall in the laboratory. Air dose measurement method was set behind the X-ray tube, 50 cm, 100 cm, 200 cm, and measured 12 locations. The dose values before and after the use of the movable radiation shielding wall were compared by measuring 3 locations behind the X-ray tube using the movable radiation shielding wall. The measured values were 50 cm on the left behind the X-ray tube: 1.446 μSv, behind the X-ray tube: 0.545 μSv, and 50 cm on the right behind the X-ray tube: 1.466 μSv. Measurements behind the radiation barrier were 0.190 μSv, 0.204 μSv, and 0.191 μSv. As a result of performing the corresponding sample t test of the average value according to the use of movable barrier walls, p <0.001 was found. As a result of the actual measurement, the medical exposure of the examiner due to the shielding wall in the laboratory decreased to 82.3%. In order to reduce occupational exposure in screening radiological laboratories, it is recommended that sufficient separation from radiation sources and the use of shielding walls are recommended.

Analysis of Patient Exposure dose with Glass Dosimeter (Glass Dosimeter를 이용한 환자피폭선량에 관한 분석)

  • Kim, Jae-In;Choi, Won-Keun;Chang, Sung-Won;Oh, Chang-Seop;Lee, Kwan-Sup;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Far reducing medical radiation exposure and managing patient doses, Entrance surface doses(ESDs) were measured at Diagnostic Radiology Department in ASAN medical center, also we determined and compared with the Diagnostic Reference Level(DRL) of some other countries. ESDs were measured far the most common types of X-ray procedures, such as chest PA, lumbar spine AP, lumbar spine lateral, Pelvis AP, Skull PA. ESDs were measured by Glass dosimeter and Unfors Xi meter. Those were applied collimation center of phantom's entrance skin surface. The results of ESDs were compared Glass dosimeter with Unfors Xi meter. Those were measured within 5% statistical difference. It seemed well agreement at two devices. In most cases ESDs measured far the different types of X ray procedures were found to be lower than the DRL of IAEA, but ESDs on chest PA, lumbar spine AP, lumbar spine lateral, Pelvis AP, Skull PA were proximity ar excesses at DRL of advanced country. Through this study, we need an investigation and improvement at present diagnostic radiology exam system. Also, radiologists make an effort to reduce patient dose and having a technical skill.

  • PDF

Diagnostic reference levels in intraoral dental radiography in Korea

  • Kim, Eun-Kyung;Han, Won-Jeong;Choi, Jin-Woo;Jung, Yun-Hoa;Yoon, Suk-Ja;Lee, Jae-Seo
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.237-242
    • /
    • 2012
  • Purpose: The objectives of this study were to survey the radiographic exposure parameters, to measure the patient doses for intraoral dental radiography nationwide, and thus to establish the diagnostic reference levels (DRLs) in intraoral dental X-ray examination in Korea. Materials and Methods: One hundred two intraoral dental radiographic machines from all regions of South Korea were selected for this study. Radiographic exposure parameters, size of hospital, type of image receptor system, installation duration of machine, and type of dental X-ray machine were documented. Patient entrance doses (PED) and dose-area products (DAP) were measured three times at the end of the exit cone of the X-ray unit with a DAP meter (DIAMENTOR M4-KDK, PTW, Freiburg, Germany) for adult mandibular molar intraoral dental radiography, and corrections were made for room temperature and pressure. Measured PED and DAP were averaged and compared according to the size of hospital, type of image receptor system, installation duration, and type of dental X-ray machine. Results: The mean exposure parameters were 62.6 kVp, 7.9 mA, and 0.5 second for adult mandibular molar intraoral dental radiography. The mean patient dose was 2.11 mGy (PED) and 59.4 $mGycm^2$ (DAP) and the third quartile one 3.07 mGy (PED) and 87.4 $mGycm^2$ (DAP). Doses at university dental hospitals were lower than those at dental clinics (p<0.05). Doses of digital radiography (DR) type were lower than those of film-based type (p<0.05). Conclusion: We recommend 3.1 mGy (PED), 87.4 $mGycm^2$ (DAP) as the DRLs in adult mandibular molar intraoral dental radiography in Korea.

THE STUDY OF PATIENT EXPOSURE AND PROTECTION FROM DENTAL RADIOGRAPHY (치과 X선 촬영에 있어서 환자에 대한 피폭과 방어에 관한 연구)

  • Park T. W.
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 1979
  • The utilization of x-ray for diagnosis and examination is increasing by about 5-15% every year, therefore, it would be mandatory to protect the patients from exposures and so, studies in this field are performed even now. In dental field, the area of irradiation is limited any to the head and neck area, but the irradiated angle is varied following the objected tooth, so the adjacent structures lens and thyroid gland would be fragile to radiation. And the scattered radiation is one of the complicated problems in the protection because of specificity of dental x-ray and its object structures. The author, by using TLD (Thermo luminescent Dosimeter; Teledyne Isotopes-Model 7300, Element; TLD 200(CaF₂:Dy) and Capintec(Capintec Model 192, PM-30 Diagnostic chamber 28㎖ active volume), tried a measurement of air dose distribution of the scattered radiation and the irradiated dose of lens and thyroid gland under the condition of taking the film on the left maxillary molar. The results were as follows: 1. The half value layer of adapted dental x-ray machine was measured, and is 1.44㎜ Al. 2. The time of irradiation on the left maxillary molar in the Alderson Rando Phantom, the measured doses of left and right lens, and thyroid gland were 8,9mR, 1,2mR and 2,8mR. Under the same conditions, the scattered radiation at the distance of 1 meter from the phantom were 84 μR at the front side, 11μR at the back side, 18μR at the right side and 72μR at the left side. 3. Under the same conditions, the dose showed higher value by about 5% in the presence of object(phantom) than in the case of absence.

  • PDF