• Title/Summary/Keyword: X-ray dose meter

Search Result 37, Processing Time 0.021 seconds

Measurements of X-Ray and Gamma Ray Dosse Rate by the Silicon P-N Junction Diode (Silicon P-N Junction Diode에 대한 X-Ray 및 Gamma-Ray 의 Dose Ratec 측정)

  • 정만영;김덕진
    • 전기의세계
    • /
    • v.13 no.3
    • /
    • pp.13-20
    • /
    • 1964
  • The measurements of X-ray and Gamma-ray Dose Rate have been successfully made by measuring the short circuit current of the Silicon P-N Junction Diode being irradiated. The short circuit current flows when a silicon P-N Junction Diode is irradiated by X-ray of Gammaray radiations due to photovoltaic effect. A brief analysis is given in order to verify the proportionality of a short circuit current to the Dose Rate. Using this method, measurements of X-ray Dose Rate were carried out in the range of 0.05-1600 r/m successfully. The calibration was made by comparing with Victoreen condenser r-meter. Some advantages in this Dose Rate meter over a condenser r-meter were found. One can measure a continous variation of X-ray Dose Rate with this rate meter at the control console of X-ray device.

  • PDF

The Response of Fluorescence Meter according to X-ray dose and quality (선량과 선질에 따른 형광량계 응답특성)

  • Kim, Jung-Min;Kim, Myung-Joon;Yoon, Jong-Min
    • Journal of radiological science and technology
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 1995
  • In order to establish the photographic effects and sensitivity of various screens, fluorescence meter is used with convenience. When the radiation quality has been fixed the fluorescence has increased in proportion to X-ray dose. However, the response of fluorescence meter has the dependency of X-ray quality in accordance with KVP. as well as the difference of screen and scatter fraction can influence on the response of fluorescence meter. Using accurate fluorescence meter as a radiation detecter and as for a proper supervision the sensitive materials, we have to aware of the meter's dependency of X-ray quality and the scatter fraction.

  • PDF

Comparison of Dose Measurement of Glass Dose Meter, Semiconductor Dose Meter, and Area Dose Meter in Diagnostic X-ray Energy (진단영역 X선 에너지에서 유리선량계, 반도체선량계, 면적선량계의 선량 실측 비교)

  • Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.483-489
    • /
    • 2019
  • This paper obtained and compared these dose values by setting and comparing the X-ray imaging conditions (tube voltage 60 kVp, 70 kVp, 80 kVp, tube current 10 mAs, 16 mAs and X-ray field size are 10 × 10 cm, 15 × 15 cm). Each dose value was measure 10 times and represented as an average value. The purpose of this experiment is to serve as a reference for the X-ray exposure of diagnostic areas according to the type of dosimeter and to help with another dose measurement. The results of the experiment showed very little difference between the glass dosimeter(GD) and semiconductor dosimeter values due to changes in tube voltage of 60, 70, 80 kVp, regardless of field sized, but for dose area product(DAP), the difference in dose value was significant according to field size.

The Study on Measurement of Relative Conversion Factor in X-ray Image Intensifier (X선영상증배관의 상대변환계수 측정에 관한 검토)

  • Kim, Sung-Chul;Shin, Sung-Ill;Lee, Sun-Sook;Huh, Joon;Kim, Sung-Soo
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.28-33
    • /
    • 1997
  • For the Evaluation of X-ray image intensifier, we measured radiation dose at input of I. I., brightness and fluorescence at output of I. I. by using X-ray exposure meter, optometer and fluorescence meter for the relative conversion factor. Especially, by using fluorescence meter, we could easily get relative conversion factor without having regulated machine by JIS. Since using, the quality of image intensifier is going down. Consequently, it needs continuous quality maintenance.

  • PDF

Characterization of X-ray Emitted in the Ion Implantation Process of Semiconductor Operations (반도체 제조 이온주입 공정의 이온 임플란타 장치에서 엑스레이 발생 특성)

  • Dong-Uk Park;Kyung Ehi Zoh;Soyeon Kim;Seunghee Lee;Eun Kyo Jeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.439-446
    • /
    • 2023
  • Objectives: The aims of this study are to investigate how X-rays are emitted to surrounding parts during the ion implantation process, to analyze these emissions in relation to the properties of the ion implanter equipment, and to estimate the resulting exposure dose. Eight ion implanters equipped with high-voltage electrical systems were selected for this study. Methods: We monitored X-ray emissions at three locations outside of the ion implanters: the accelerator equipped with a high-voltage energy generator, the impurity ion source, and the beam line. We used a Personal Portable Dose Rate and Survey Meter to monitor real-time X-ray levels. The SX-2R probe, an X-ray Features probe designed for use with the RadiagemTM meter, was also utilized to monitor lower ranges of X-ray emissions. The counts per second (CPS) measured by the meter were estimated and then converted to a radiation dose (𝜇Sv/hr) based on a validated calibration graph between CPS and μGy/hr. Results: X-rays from seven ion implanters were consistently detected in high-voltage accelerator gaps, regardless of their proximity. X-rays specifically emanated from three ion implanters situated in the ion box gap and were also found in the beam lines of two ion implanters. The intensity of these X-rays did not show a clear pattern relative to the devices' age and electric properties, and notably, it decreased as the distance from the device increased. Conclusions: In conclusion, every gap, in which three components of the ion implanter devices were divided, was found to be insufficiently shielded against X-ray emissions, even though the exposure levels were not estimated to be higher than the threshold.

Doses of Pediatric and X-ray Examination Assistants according to Changes in Pediatric X-ray Exposure Conditions (소아 X선 촬영조건 변화에 따른 소아 및 촬영보조자 선량)

  • Beom-Jin Jang;Ha-Yun Nam;Hye-Min Shin;Dong-Min Yun;Seung-Kook Lee;In-Hwa Jang;Sungchul Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.409-415
    • /
    • 2023
  • Although pediatric X-ray examinations are continuously increasing, there are not many studies on the radiation exposure to children and X-ray examination assistants according to X-ray Exposure conditions. Accordingly, we measured the radiation exposure dose of pediatric and X-ray examination assistants according to the standard guidelines and clinical average X-ray Exposure conditions when X-ray examination 10-year-old children. The effective dose and organ dose to pediatric were measured using an Dose area production meter and Monte Carlo-based PCXMC program, and the exposure dose of X-ray examination assistants was measured using an ion-chamber. When performing abdominal supine AP projection, the effective dose to children was up to 2.38 times higher under clinical average X-ray Exposure conditions than the standard guidelines. In addition, during abdominal supine AP projection, the radiation exposure dose to the X-ray examination assistants was highest on the hands at 0.0148 ~ 0.0709 mSv, and exposure dose could be reduced by up to 35% when wearing protective gloves. In conclusion, because the X-ray Exposure conditions used in clinical are unnecessarily high, unnecessary medical radiation exposure could be reduced if appropriate X-ray Exposure conditions and the radiation field area were minimized and the assistant wore shielding gloves.

Calibration Examination of Dose Area Product Meters using X-ray (X선을 이용한 면적선량계의 교정 연구)

  • Jung, Jae Eun;Won, Do-Yeon;Jung, Hong-Moon;Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • We measured the absorbed dose and the area dose using an ionization chamber type of area dose product (DAP) meter and measured the calibration factor in the X-ray examination. In the indirect dose measurement method, the detector was installed in the radiation part of the X-ray equipment, and the measured value was calculated as the dose at the exposure part. The instrument used to calculate the calibration factor was an X-ray equipment (DK-550R / F, DongKang Medical Co., Ltd., Seoul, Korea). The calibration method for the calibration factor was to connect the DAP meter (PD-8100, Toreck Co. Ltd., Japan) to the calibration dosimeter tube voltage of 70 kV, tube current of 500 mA, 0.158 sec. The reference dosimeter used a semiconductor (DOSIMAX plus A, Scanditronix, $Wellh{\ddot{o}}fer$, Germany). After installing the DAP meter on the front of the multi-collimator of the ionization chamber, the calibration factor of the dosimeter was obtained using the reference dosimeter for accurate dose measurement. Experimental exposure values and values from the calibration dosimeter were calculated by multiplying each calibration factor. The calibration factor was calculated as 1.045. In order to calculate the calibration coefficient according to the tube voltage in the ionization type DAP dosimeter, the absorbed dose and the area dose were calculated and the calibration factor was calculated. The corrective area dose was calculated by calculating the calibration factor of the DAP meter.

The Measurement and Analysis by Free Space Scatter Dose Distribution of Diagnostic Radiology Mobile Examination Area (영상의학과 이동검사 영역의 공간선량 분포에 대한 측정 및 분석)

  • Kim, Sung-Kyu;Son, Sang-Hyuk
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2009
  • There are several reasons to take X-ray in case of inpatients. Some of them who cannot ambulate or have any risk if move are taken portable X-ray at their wards. Usually, in this case, many other people-patients unneeded X-ray test, family, hospital workers etc-are indirectly exposed to X-ray by scatter ray. For that reason I try to be aware of free space scatter dose accurately and make the point at issue of portable X-ray better in this study. kVp dose meter is used for efficiency management of portable X-ray equipment. Mobile X-ray equipment, ionization chamber, electrometer, solid water phantom are used for measuring of free space scatter dose. First of all the same surroundings condition is made as taken real portable X-ray, inquired amount of X-ray both chest AP and abdomen AP most frequently examined and measured scatter ray distribution of two tests individually changing distance. In the result of measuring horizontal distribution with condition of chest AP it is found that the mAs is decreased as law of distance reverse square but no showed mAs change according to direction. Vertical distribution showed the mAs slightly higher than horizontal distribution but it isnt found out statistical characteristic. In abdomen AP, compare with chest AP, free space scatter dose is as higher as five-hundred times and horizontal, vertical distribution are quite similar to chest AP in result. In portable X-ray test, in order to reduce the secondary exposure by free space scatter dose first, cut down unnecessary portable order the second, set up the specific area at individual ward for the test the third, when moving to a ward for the X-ray test prepare a portable shielding screen. The last, expose about 2m apart from patients if unable to do above three ways.

  • PDF

Leakage and scattered radiation from hand-held dental x-ray unit (이동용 치과 X선 발생장치의 누설 및 산란 선량에 관한 연구)

  • Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.65-68
    • /
    • 2007
  • Purpose: To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. Materials and Methods: For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR III was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of handheld dental X-ray unit were 70 kVp, 3 mA, 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. Results: The mean dose at the hand level when human skull DXTTR III was exposed with portable X-ray unit $6.39{\mu}Gy$, and the mean dose with fixed X-ray unit $3.03{\mu}Gy$ (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was $2.97{\mu}Gy$ and with fixed X-ray unit the mean dose was $0.68{\mu}Gy$ (p<0.01). Conclusions: The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  • PDF

Analysis of Space Radiation Dose Rate using portable X-ray Generating Device for Abdomen (이동형 X-ray 발생장치를 이용한 복부 촬영 시 공간 선량률에 관한 연구)

  • Park, Chang-Hee
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • This experimental study is carried out one of the General Hospital in Kyungbok providence. Abdomen Phantom being located Anterior-posterior(AP) position on portable bed, and the portable X-ray generating device was placed the phantom at $-90^{\circ}$ direction. The experiment were set 65 kVp, 10 mAs, $10{\times}10\;cm^2$, 100 cm(FOD) for the measurement. Digital proportional counting tube survey meter was used for measuring the space scatter dose. Measurement points of horizontal distribution was set up at $30^{\circ}$ interval by increasing 50 cm radius of upside, downside, left and right. Vertical distribution of measurement points were set up for the vertical plane with a radius of at $30^{\circ}$ intervals with 50cm increments. It is concluded that longer distance from the soure of X-ray significantly decrease radiation dose to the patient and use of the radiation protection device should be applied in clinical practice to reduce dose to the patient.

  • PDF