• Title/Summary/Keyword: X-ray Shielding

Search Result 167, Processing Time 0.027 seconds

50-300 keV X-ray Transmission Ratios for Lead, Steel and Concrete

  • Tae Hwan Kim;Kum Bae Kim;Geun Beom Kim;Dong Wook Kim;Sang Rok Kim;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.164-171
    • /
    • 2022
  • The number of facilities using radiation generators increases and related regulations are strengthened, the establishment of a shielding management and evaluation technology has become important. The characteristics of the radiation generator used in previous report differ from those of currently available high-frequency radiation generators. This study aimed to manufacture lead, iron, and concrete shielding materials for the re-verification of half-value layers, tenth-value layers, and attenuation curve. For a comparison of attenuation ratio, iron, lead, and concrete shields were manufactured in this study. The initial dose was measured without shielding materials, and doses measured under different types and thicknesses of shielding material were compared with the initial dose to calculate the transmission rate on 50-300 kVp X-ray. All the three shielding materials showed a tendency to require greater shielding thickness for higher energy. The attenuation graph showed an exponential shape as the thickness decreased and a straight line as the thickness increased. The difference between the measurement results and the previous study, except in extrapolated parts, may be due to the differences in the radiation generation characteristics between the generators used in the two studies. The attenuated graph measured in this study better reflects the characteristics of current radiation generators, which would be more effective for shield designing.

Gadolinium- and lead-containing functional terpolymers for low energy X-ray protection

  • Zhang, Yu-Juan;Guo, Xin-Tao;Wang, Chun-Hong;Lu, Xiang An;Wu, De-Feng;Zhang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4130-4136
    • /
    • 2021
  • By polymerization of gadolinium methacrylate (Gd (MAA)3), lead methacrylate (Pb(MAA)2) and methyl methacrylate (MMA), Gd and Pb were chemically bonded into polymers. The X-ray shielding performance was evaluated by Monte Carlo simulation method, and the results showed that the more metal functional organic monomer, the better the shielding performance of terpolymers. When the X-ray energy is 65 keV, Gd (MAA)3-containing polymers have better shielding performance than Pb(MAA)2-containing polymers. Gd could compensate for the weak absorption region of Pb. Therefore, polymers containing both Gd and Pb enhanced shielding efficiency against X-ray in various low-energy ranges. For obtaining terpolymers with uniform monomer compositions, the relationship between the monomer composition of the terpolymers and the conversion level was optimized by calculating the reactivity ratios. The value of reactivity ratios of r (Gd (MAA)3/Pb(MAA)2), r (Pb(MAA)2/Gd (MAA)3), r (Gd (MAA)3/MMA), r (MMA/Gd (MAA)3), r (Pb(MAA)2/MMA) and r (MMA/Pb(MAA)2) was 0.483, 0.004, 0.338, 2.508, 0.255, 0.029. The terpolymers with uniform monomer composition could be obtained by controlling the monomer compositions or conversion levels. The results can provide new radiation protection materials and contribute to the improvement in nuclear safety.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Rapidly and Accurately Processing of Low Melting Block for Shielding of Radiotherapy (방사선(放射線) 치료(治療)의 신속정확(迅速正確)을 위한 저온용융(低溫熔融) 차폐물(遮蔽物)의 제작(製作)과 응용(應用))

  • Chu, S.S.;Lee, D.H.;Park, C.Y.
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 1979
  • For accurate and easily shielding irregular shaped organ, its minimized penumbra region and a low melting point alloy 'Lead Y' and synchronizing instrument have been developed. The 'Lead Y' is the quaternary eutectic alloy and it is composed of Lead 30.0% Tin 11.5% Bismuth 48 5% Cadmium 10.0% The density of its at $22^{\circ}C$ is $9.8g/cm^3$ and the melting temperature has $40^{\circ}C\;to\;68^{\circ}C$. The thickness of 'Lead Y' for perfect shielding of Co-60 gamma ray and LINAC 10MeV x-ray is 6cm and 7cm respectively. The 'Lead Y' shielding block is casted directly on the styrofoam from which is cut with hot wire of synchronizer device. The special features and advantages of the Lead Y shielding block could be summarized as follows; 1. The shielding block for radiotherapy is rapidly processed only with boiling water and styrofoam. 2. It is not injure one's health and not danger of a fire, because of not generating of any metals vapor and evil smelling. 3. It is very effective to minimize secondary penumbra for the protection of healthy tissue from unnecessary ionizing radiation regardless of the magnification source to skin distance. 4. The HVL of the Lead Y is 1.2cm for Co-60 gamma ray and it's shielding effect is almost same as the pure lead block. 5. The hardness of Lead Y is 1.5 times higher than lead block. 6. It's reavailability is higher than lead block and then one block of Lead Y is reavailable about 30 to 40 times. 7. It is usefull for shielding of x-ray, gamma ray, beta-ray, electron and neutron radiation. 8. The materials for Lead Y are easy to acquire with reasonable price and tractable.

  • PDF

Vertical Space Analysis for Gradient Radiating Steel-tube Radiographic Image (경사조사(傾斜照射) 강판튜브 방사선 관측영상의 수직 방향 공간분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.29-31
    • /
    • 2007
  • In this paper we propose an directional analytic approach in image data space for X-ray image which is detected from the X-ray projection system. Such a radiographic nondestructive testing has long been used for steel-tube inspection and weld monitoring. The welded area and thickness of steel-tube are detected from gradient radiating mechanism based on the evaluation of biased X-ray source position. The welded area is an ellipse type on low contrast X-ray image including noise. Noise originates from most of elements of the system. such as shielding CCD camera, imaging screen, X-ray source, inspected object, electronic circuits and etc.. Projection incorrectness and noise influence on imaging quality is to be represented by vertical pixels' distribution. Space analysis due to vertical direction also shows the segmental possibility between regions by visual edge evaluation.

  • PDF

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

Radiation Shielding Analysis for the X-ray Facility (X-선 발생장치 시설의 방사선 차폐 해석)

  • Kwon, Seog-Guen;Choi, Ho-Sin;Moon, Philip-S.;Yook, Jong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 1987
  • Radiation shielding analysis for a 6MeV X-ray facility was carried out. The primary and leakage radiation for the facility can be evaluated based on the methodology in NCRP No. 49 and 51. The present study deals with radiation scattering analysis for the outside and inside door of the facility based on the albedo concept. The calculated dose rates were compared with the results of MORSE-CG code calculation and the measured data, resulting in a good agreement, even though there existed some deviation for the inside door. These results can be utilized to the radiation shielding design of the medical and industrial X and gamma ray facilities, and to the safety evaluation of these facilities.

  • PDF

The Relationship of the Filtration and the Side-scattered Dose in Verious Radiation Shielding Materials (방사선차폐물질(放射線遮蔽物質)에서 발생(發生)하는 측방산란선(側方散亂線)의 측정(測定))

  • Huh, Joon;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 1984
  • Side-direction scattered dose from various radiation shielding materials was measured at 50cm distance from the central beam of primary ray by used several kinds of added filters for a x-ray deep therapeutic installation, the obtained results were as follows : 1. Dose rate by tube voltage was more increased at heavy filtration than light filtration. 2. Scattered doses produced by constant tube voltage in all shielding materials were decreased at heavier filtration. 3. Scattered doses produced by constant shielding material in all tube voltages were decreased at heavier filtration.

  • PDF

Verification of the Protective Effect of Functional Shielding Cream for the Prevention of X-ray Low-dose Exposure (X-ray 저선량 피폭방지를 위한 기능성 차폐크림의 방어 효과 검증)

  • Seon-Chil Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.497-506
    • /
    • 2023
  • In the case of radiation workers in medical institutions, radiation exposure is made for patient protection and accurate procedures, so they have a problem of low dose exposure. Low-dose radiation exposure occurs mainly in parts of the body other than the Apron area, and the most frequent place is the skin of the back of the hand. In particular, since the medical personnel's hands require senses and fine movements during the procedure, they are defenseless in the radiation exposure area and are at risk of exposure. It can solve the problem of shielding such as lead gloves, and it is difficult to use by suggesting the activity of the hand during the procedure. To solve this problem, a shielding cream capable of obtaining a functional radiation protection effect was developed and its shielding performance was compared with lead equivalent of 0.1 mmPb. In the process of manufacturing shielding cream, the shielding performance was improved by adding a defoaming process to reduce air holes to increase the density of the cream. Therefore, the shielding cream using barium sulfate as the main material has a lower shielding rate than the lead plate, and in the realm of effective energy, it is 59%, At high effective energy, a difference of about 37% was shown, indicating that there is a functional radiation protection effect. The advantage is that it can be used directly on the skin, and it is considered that it can be used before wearing surgical gloves and has a permanent protective effect.

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.