• Title/Summary/Keyword: X-linked gene expression

Search Result 35, Processing Time 0.027 seconds

A Case of Wiskott-Aldrich Syndrome with Novel Mutation in Exon 2 of the WASP Gene (WASP 유전자의 Exon 2에서 새로운 돌연변이를 가진 Wiskott-Aldrich 증후군의 1례)

  • Lee, Hyuk;Park, Jung-In;Kim, Sun Young;Moon, Kyeung Hee;Yi, Ho Keun;Hwang, Pyeong Han
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.5
    • /
    • pp.551-556
    • /
    • 2005
  • Wiskott-Aldrich syndrome(WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia with small platelet volume, eczema, and recurrent infections, and is also characterized by increased incidence of auto immune diseases and malignancies. The phenotype observed in this syndrome is caused by mutation in the Wiskott-Aldrich syndrome protein(WASP) gene localized to the proximal short arm of the X chromosome and recently isolated through positional cloning. The gene encodes a 502 amino acid protein, which contains 12 exons and spans 9 kb of genomic DNA. The function of the encoded protein is not well understood. The clinical diagnosis of WAS can be difficult and is usually confirmed by the detection of WASP gene mutations and the expression of WSAP in patient blood sample using genetic analysis. We reported a case of a 13-month old boy with WAS who was identified with the novel mutation in exon 2 of WASP gene by direct sequencing and the complete absence of WASP expression by immunoblotting.

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Expression of $\beta$-Galactosidase Gene Microinjected into Xenopus Egg During Early Development (초기발생 동안 양서류 난에 미세주입된 $\beta$-galactosidase 유전자의 발현)

  • 차병직;정해문
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.365-372
    • /
    • 1990
  • For the effort to produce transgenic amphibians, a plasmid DNA sequence (cytoplasmic actin promoter-linked bacterial $\beta$-galactosidase gene) was microinjected into fertilized Xenopus eggs. It appeared that the injection of 20 nl solution containing 1-2 ng of DNA was not toxic, but over 4 ng was toxic to embryonic development. The translational product of $\beta$-gal gene ($\beta$-galactosidase) had enzyme activity in all three germ layers of the embryo. Expression of the injected $\beta$-gal genes was first detected at mid-gastrula stage, and the activity persisted up to stage 43 (feeding tadpole) with decreased level of retention. However, the level of the expression was various among the injected individuals as well as each experiment. That is, $\beta$-galactosidase activities did not appear in all cells, instead a localized distribution pattern. Although other possibilities could not be omitted, this mosaic distribution of gene expression seemed to arise from unequal partition of the injected DNA into each blastomere during early cleavage.

  • PDF

Adiponectin Gene Cloning and Its Expression in Insect Cell Expression System

  • Yuh, In Suh;Sheffield, Lewis G.
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.193-198
    • /
    • 2012
  • This study was to examine expression of the recombinant full-length adiponectin (recombinant adiponectin) in insect ovarian cell culture system and to characterize structural properties of the recombinant adiponectin secreted in medium. Gene construct encoding the recombinant adiponectin contained N-terminal collagen-like domain (110 Amino Acids, AAs), C-terminal globular domain (137 AAs) and C-terminal peptides for detection with V5 antibody (26 AAs included adaptor peptide) and purification using the 6xHis tag (6 AAs). The approximate molecular weight of the product (monomer) was 35 kDa. Molecular mass species of the expressed recombinant adiponectin were monomer (~35 kDa), dimer (~70 kDa), trimer (~105 kDa) and hexamer (~210 kDa). The major secreted species were the LMW forms, such as monomer, dimer, and trimer. There was MMW of hexamer as minor form. HMW multimers (~300 kDa) were shown as a tracer or not detected on the SDS-PAGE in several experiments (data not shown). The multimer forms in this study were not compatible to those in animal or human serum and adipose tissue by other researcher's study in which the major multimer forms were HMW. By protein denaturing experiments with reducing reagent (${\beta}$-MeOH), anionic detergent (SDS) and heat ($95^{\circ}C$) on the SDS-PAGE, not all adiponectin multimers seemed to have disulfide bond linked structure to form multimers. The recombinant adiponectin which expressed in insect ovarian cell culture system seemed to have the limitation as full physiological regulator for the application to animal and human study.

Valproic Acid Reduces Reactive Oxygen Species in Fibroblast of X-linked Adrenoleukodystrophy (부신백질형성장애증 섬유모세포에서 발프로산의 항산화능)

  • Kang, Joon Won;Quan, Zhejiu;Jang, Jiho;Kang, Hoon-Chul
    • Journal of the Korean Child Neurology Society
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Purpose: X-linked adrenoleukodystrophy (X-ALD) is a fatal, axonal demyelinating, neurodegenerative disease, and is caused by mutations the in ABCD1 (ATP-binding cassette transporter subfamily D member 1). Oxidative damage of proteins caused by very long chain fatty acid accumulating in X-ALD, is an early event in the neurodegenerative cascade. We evaluated valproic acid (VPA) as a possible option for oxidative damage in X-ALD. Method: We generated fibroblast of the childhood cerebral ALD from patient. We evaluated mRNA (ribonucleic acid) level of ABCD2 by real-time polymerase chain reaction, and reactive oxygen species (ROS) levels by flow cytometry. Results: VPA increased expression of ABCD2 in both control and ALD fibroblast. ABCD2 gene mRNA expression was increased 1.76 fold in normal fibroblasts, and 2.22 fold in the X-ALD fibroblasts. ROS levels were decreased in VPA treated X-ALD fibroblast, especially in treated with 1 mM of VPA. ROS levels revealed 13.7 in control fibroblast, on the other hand, 5.83 in X-ALD fibroblast treated with 1 mM of VPA. Conclusion: We propose VPA as a promising novel therapeutic approach in oxidant damage that warrants further clinical investigation in X-ALD.

Design and Expression of Recombinant Antihypertensive Peptide Multimer Gene in Escherichia coli BL21

  • Rao, Shengqi;Su, Yujie;Li, Junhua;Xu, Zhenzhen;Yang, Yanjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1620-1627
    • /
    • 2009
  • The design and expression of an antihypertensive peptide multimer (AHPM), a common precursor of 11 kinds of antihypertensive peptides (AHPs) tandemly linked up according to the restriction sites of gastrointestinal proteases, were explored. The DNA fragment encoding the AHPM was chemically synthesized and cloned into expression vector pGEX-3X. After an optimum induction with IPTG, the recombinant AHPM fused with glutathione S-transferase (GST-AHPM) was expressed mostly as inclusion body in Escherichia coli BL21 and reached the maximal production, 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by cation-exchange chromatography under denaturing conditions, followed by refolding together with size-exclusion chromatography and gradual dialysis. The resulting yield of the soluble GSTAHPM (34 kDa) with a purity of 95% reached 399 mg/l culture. The release of high active fragments from the AHPM was confirmed by the simulated gastrointestinal digestion. The results suggest that the design strategy and production method of the AHPM will be useful to obtain a large quantity of recombinant AHPs at a low cost.

Nuclear Modeling and Developmental Potential of Bovine Somatic Nuclear Transfer Embryos Cloned by Two Different Activation Methods

  • Jeon, Byeong-Gyun;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • The present study investigated the nuclear remodeling, development potential with telomerase activity and transcription level of X-linked genes (ANT3, HPRT, MeCP2, RPS4X, XIAP, XIST and ZFX) in the bovine somatic cell nuclear transfer (SCNT) embryos using two different fusion and activation methods. Female adult fibroblasts were injected into perivitelline space of in vitro matured oocytes. The oocyte-nucleus complexes were fused and followed by immediately either activated (Group 1), or activated at 1 h post-fusion (hpf) (Group 2), respectively. The incidence of normal premature chromosome condensation (PCC) at 1 hpf was slightly increased in the Group 2, compared to those of Group 1, but there was no significant (p<0.05) difference. The incidence of normal pronucleus (PN) and chromosome spread at 5 and 18 hpf were significantly (p<0.05) higher in the Group 2 than those of Group 1. The cleavage rate to 2-cell stage, developmental rate to blastocyst stage, and the mean number of total and ICM cell numbers were significantly (p<0.05) higher in the Group 2, compared to those of Group 1. Level of telomerase activity was significantly (p<0.05) higher in the SCNT blastocysts of Group 2, compared to those of Group 1. Transcript levels of HPRT, MeCP2 and XIST were not significantly (p<0.05) different between blastocysts of Group 1 and 2. However, transcript level of ANT3, RPS4X, XIAP and ZFX were significantly (p<0.05) up-regulated in the SCNT blastocysts of Group 2, compared to those of Group 1. Taken together, it is concluded that oocyte activation at 1 hpf induces the enhanced developmental potential by efficient nuclear remodeling and subsequent facilitation of the nuclear reprogramming of bovine SCNT embryos.

A Study on the Genetic Inheritance of Ankyloglossia Based on Pedigree Analysis

  • Han, Soo-Hyung;Kim, Min-Cheol;Choi, Yun-Seok;Lim, Jin-Soo;Han, Ki-Taik
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.329-332
    • /
    • 2012
  • Background Ankyloglossia or tongue-tie is a congenital anomaly characterized by an abnormally short lingual frenum. Its prevalence in the newborn population is approximately 4%. Its mode of inheritance has been studied in some articles, but no conclusion has been established. Also, no relevant report has been published in Korea. This study was conducted to elucidate the genetic inheritance of ankyloglossia via pedigree analysis. Methods In this study, 149 patients with no other congenital anomaly who underwent frenuloplasty between March 2001 and March 2010 were studied. Pedigrees were made via pre- or post-operative history taking, and patients with uncertain histories were excluded. In the patient group that showed a hereditary nature, the male-to-female ratio, inheritance rate, and pattern of inheritance were investigated. Results One hundred (67.11%) of the patients were male and 49 (32.89%) were female (male-female ratio=2.04:1). Ninety-one (61.07%) patients reported no other relative with ankyloglossia, and 58 (38.93%) patients had a relative with this disease. The inheritance rate was 20.69% in the 58 cases with a hereditary nature. In the group with no family history of ankyloglossia, the male-female ratio was 3.79:1, which significantly differed from that of the group with a family history of ankyloglossia. X-chromosome mediated inheritance and variation in the gene expression was revealed in the pedigree drawn for the groups with hereditary ankyloglossia. Conclusions Ankyloglossia has a significant hereditary nature. Our data suggest X-linked inheritance. This study with 149 patients, the first in Korea, showed X-linked inheritance in patients with a sole anomaly.

Characterization of B Cells of Lymph Nodes and Peripheral Blood in a Patient with Hyper IgM Syndrome (Hyper IgM Syndrome 환자에서 얻은 림프절 및 말초혈액 B세포의 특성)

  • Kim, Dong Soo;Shin, Kyuong Mi;Yang, Woo Ick;Shin, Jeon-Soo;Song, Chang Hwa;Jo, Eun Kyeong
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.2
    • /
    • pp.128-136
    • /
    • 2003
  • Purpose : Hyper IgM syndrome(HIGM) is characterized by severe recurrent bacterial infections with decreased serum levels of IgG, IgA, and IgE but elevated IgM levels. Recently, it has been classified into three groups; HIGM1, HIGM2 and a rare form of HIGM. HIGM1 is a X-linked form of HIGM and has now been identified as a T-cell deficiency in which mutations occur in the gene that encodes the CD40 ligand molecule. HIGM2 is an autosomal recessive form of HIGM. Molecular studies have shown that the mutation of HIGM2 is in the gene that encodes activation-induced cytidine deaminase(AID). Recently, another rare form of X-linked HIGM syndrome associated with hypohydrotic ectodermal dysplasia has been identified. We encountered a patient with a varient form of HIGM2. To clarify the cause of this form of HIGM, we evaluated the peripheral B cells of this patient. Methods : The lymphocytes of the patient were prepared from peripheral blood. B cells were immortalized with the infection of EBV. Cell cycle analysis was done with the immortalized B cells of the patient. Peripheral mononuclear cells were stained with monoclonal anti-CD40L antibody. Total RNA was extracted from the peripheral mononuclear cells. After RT-PCR, direct sequencing for CD40L gene and HuAID gene were done. Immunostainings of a lymph node for CD3, CD23, CD40, Fas-L, bcl-2, BAX were done. Results : The peripheral B cells of this patient showed normal expression of CD40L molecule and normal sequencing of CD40L gene, and also normal sequencing of AID gene. Interestingly, the peripheral B cells of this patient showed a decreased population of G2/mitosis phase in cell cycles which recovered to normal with the stimulation of IL-4. Conclusion : We suspect that the cause of increased serum IgM in this patient may be from a decrease of G2/mitosis phase of the peripheral B cells, which may be from the decreased production or secretion of IL-4. Therefore, this may be a new form of HIGM.

Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs

  • Men, X.M.;Deng, B.;Tao, X.;Qi, K.K.;Xu, Zi Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.457-463
    • /
    • 2016
  • The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY ($Duroc{\times}Landrace{\times}Yorkshire$) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics.