DOI QR코드

DOI QR Code

Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs

  • Men, X.M. (Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Deng, B. (Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Tao, X. (Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Qi, K.K. (Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Xu, Zi Wei (Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science)
  • Received : 2015.03.24
  • Accepted : 2015.08.24
  • Published : 2016.04.01

Abstract

The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY ($Duroc{\times}Landrace{\times}Yorkshire$) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics.

Keywords

References

  1. Bottinelli, R. and C. Reggiani. 2000. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73:195-262. https://doi.org/10.1016/S0079-6107(00)00006-7
  2. Caiozzo, V. J., F. Haddad, M. J. Baker, and K. M. Baldwin. 1996. Influence of mechanical loading on myosin heavy-chain protein and mRNA isoform expression. J. Appl. Physiol. 80:1503-1512. https://doi.org/10.1152/jappl.1996.80.5.1503
  3. Caiozzo, V. J., Y. Z. Wu, M. J. Baker, and R. Crumley. 2004. Effects of denervation on cell cycle control in laryngeal muscle. Arch. Otolaryngol. Head Neck Surg. 130:1056-1068. https://doi.org/10.1001/archotol.130.9.1056
  4. Chen, G., T. G. Gharib, C-C. Huang, J. M. G. Taylor, D. E. Misek, S. L. R. Kardia, T. J. Giordano, M. D. Iannettoni, M. B. Orringer, S. M. Hanash, and D. G. Beer. 2002. Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell. Proteomics 1:304-313. https://doi.org/10.1074/mcp.M200008-MCP200
  5. Cox, R. D. and M. E. Buckingham. 1992. Actin and myosin genes are transcriptionally regulated during mouse skeletal muscle development. Dev. Biol. 149:228-234. https://doi.org/10.1016/0012-1606(92)90279-P
  6. Diffee, G. M., F. Haddad, R. E. Herrick, and K. M. Baldwin. 1991. Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension. Am. J. Physiol. 261: C1099-C1106. https://doi.org/10.1152/ajpcell.1991.261.6.C1099
  7. Gunawan, A. M., S. K. Park, J. M. Pleitner, L. Feliciano, A. L. Grant, and D. E. Gerrard. 2007. Contractile protein content reflects myosin heavy-chain isoform gene expression. J. Anim. Sci. 85:1247-1256. https://doi.org/10.2527/jas.2006-511
  8. Hu, H. M., J. Y. Wang, R. S. Zhu, J. F. Guo, and Y. Wu. 2008. Effect of myosin heavy chain composition of muscles on meat quality in Laiwu pigs and Duroc. Sci. China. Series C, Life Sci. 51:127-132. https://doi.org/10.1007/s11427-008-0016-x
  9. Jankala, H., V. P. Harjola, N. E. Petersen, and M. Harkonen. 1997. Myosin heavy chain mRNA transform to faster isoforms in immobilized skeletal muscle: A quantitative PCR study. J. Appl. Physiol. 82:977-982. https://doi.org/10.1152/jappl.1997.82.3.977
  10. Joo, S. T., G. D. Kim, Y. H. Hwang, and Y. C. Ryu. 2013. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 95:828-836. https://doi.org/10.1016/j.meatsci.2013.04.044
  11. Lee, S. H., S. T. Joo, and Y. C. Ryu. 2010. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 86:166-170. https://doi.org/10.1016/j.meatsci.2010.04.040
  12. Lefaucheur, L. and D. E. Gerrard. 2000. Muscle fiber plasticity in farm mammals. J. Anim. Sci. 77(E-Suppl):1-19. https://doi.org/10.2527/jas2000.77E-Suppl1b
  13. Li, Z. B., M. Lehar, R. Samlan, and P. W. Flint. 2005. Proteomic analysis of rat laryngeal muscle following denervation. Proteomics 5:4764-4776. https://doi.org/10.1002/pmic.200401329
  14. Lynch, G. S., S. A. Cuffe, D. R. Plant, and P. Gregorevic. 2001. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice. Neuromuscul. Dis. 11:260-268. https://doi.org/10.1016/S0960-8966(00)00192-9
  15. Mahdavi, V., S. Izumo, and B. Nadal-Ginard. 1987. Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ. Res. 60:804-814. https://doi.org/10.1161/01.RES.60.6.804
  16. Men, X. M., B. Deng, Z. W. Xu, X. Tao, and K. K. Qi. 2013. Agerelated changes and nutritional regulation of myosin heavychain composition in longissimus dorsi of commercial pigs. Animal 7:1486-1492. https://doi.org/10.1017/S1751731113000992
  17. MusarO, A., K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E. R. Barton, H. L. Sweeney, and N. Rosenthal. 2001. Loclized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27:195-200. https://doi.org/10.1038/84839
  18. National Research Council. 1998. Nutrient Requirements of Swine. 10th Ed. National Academy Press, Washington, DC, USA.
  19. Pette, D. and R. S. Staron. 2000. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 50:500-509. https://doi.org/10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7
  20. Reggiani, C., R. Bottinelli, and G. J. Stienen. 2000. Sarcomeric myosin isoforms: fine tuning of a molecular motor. News Physiol. Sci. 15:26-33.
  21. Reilly, M. E., G. McKoy, D. Mantle, T. J. Peters, G. Goldspink, and V. R. Preedy. 2000. Protein and mRNA levels of the myosin heavy chain isoforms Ibeta, IIa, IIx and IIb in type I and type II fibre-predominant rat skeletal muscles in response to chronic alcohol feeding. J. Muscle Res. Cell Motil. 21:763-773. https://doi.org/10.1023/A:1010336624154
  22. Sanchez, H., R. Chapot, S. Banzet, N. Koulmann, O. Birot, A. X. Bigard, and A. Peinnequin. 2006. Quantification by real-time PCR of developmental and adult myosin mRNA in rat muscles. Biochem. Biophys. Res. Commun. 340:165-174. https://doi.org/10.1016/j.bbrc.2005.11.172
  23. Savolainen, J. and M. Vornanen. 1995. Myosin heavy chains in skeletal muscles of the common shrew (Sorex araneus): absence of a slow isoform and transitions of fast isoforms with ageing. Acta Physiol. Scand. 155:233-239. https://doi.org/10.1111/j.1748-1716.1995.tb09968.x
  24. Schiaffino, S., L. Gorza, S. Sartore, L. Saggin, S. Ausoni, M Vianello, K Gundersen, and T. Lomo. 1989. Three myosin heavy chain isoforms in type 2 skeletal muscle fibers. J. Muscle Res. Cell Motil. 10:197-205. https://doi.org/10.1007/BF01739810
  25. Schiaffino, S. and C. Reggiani. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76:371-423. https://doi.org/10.1152/physrev.1996.76.2.371
  26. Schiaffino, S. and C. Reggiani. 2011. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91:1447-1531. https://doi.org/10.1152/physrev.00031.2010
  27. Serrano, A. L., M. Murgia, G. Pallafacchina, E. Calabria, P. Coniglio, T. Lomo, and S. Schiaffino. 2001. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc. Nat. Acad. Sci. USA. 98:13108-13113. https://doi.org/10.1073/pnas.231148598
  28. Short, K. R., J. L. A.Vittone, M. L. Bigelow, D. N. Proctor, J. M. Coenen-Schimke, P. Rys, and K. S. Nair. 2005. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J. Appl. Physiol. 99:95-102. https://doi.org/10.1152/japplphysiol.00129.2005
  29. Spangenburg, E. E. and F. W. Booth. 2003. Molecular regulation of individual skeletal muscle fibre types. Acta Physiol. Scand.. 178:413-424. https://doi.org/10.1046/j.1365-201X.2003.01158.x
  30. Sullivan, V. K., S. K. Powers, D. S. Criswell, N. Tumer, J. S. Larochelle, and D. Lowenthal. 1995. Myosin heavy chain composition in young and old rat skeletal muscle: Effects of endurance exercise. J. Appl. Physiol. 78: 2115-2120. https://doi.org/10.1152/jappl.1995.78.6.2115
  31. Tian, Q., S. B. Stepaniants, M. Mao, L. Weng, M. C. Feetham, M. J. Doyle, E. C. Yi , H. Dai , V. Thorsson, J. Eng, D. Goodlett, J. P. Berger, B. Gunter, P. S. Linseley, R. B. Stoughton, R. Aebersold, S. J. Collins, W. A. Hanlon, and L. E. Hood. 2004. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics 3:960-969. https://doi.org/10.1074/mcp.M400055-MCP200
  32. Van Daele, D. J. 2010. Quantitative PCR analysis of laryngeal muscle fiber types. J. Commun. Disord. 43:327-334. https://doi.org/10.1016/j.jcomdis.2010.04.006
  33. Yang, F. Y., D. W. Chen, J. X. Huang, and Z. H. Liu. 2008. Developmental changes of myofiber types in Longissimus Dorsi muscle of Rongchang and DLY Pigs under different nutrient condition. Chinese J. Anim. Vet. Sci. 39:1701-1708.
  34. Zhao, R. Q., X. J. Yang, Q. F. Xu, X. H. Wei, D. Xia, J. Chen. 2004. Expression of GHR and PGC-1 alpha in association with changes of MyHC isoform types in longissimus muscle of Erhualian and Large White pigs (Sus scrofa) during postnatal growth. Anim. Sci. 79:203-211. https://doi.org/10.1017/S1357729800090068

Cited by

  1. Effects of a traditional Chinese medicine formula and its extraction on muscle fiber characteristics in finishing pigs, porcine cell proliferation and isoforms of myosin heavy chain gene expression in myocytes vol.30, pp.11, 2017, https://doi.org/10.5713/ajas.16.0872
  2. Age-Dependent Expression of MyHC Isoforms and Lipid Metabolism-Related Genes in the Longissimus Dorsi Muscle of Wild and Domestic Pigs vol.9, pp.1, 2016, https://doi.org/10.3390/ani9010010