• 제목/요약/키워드: X-Y table robot

검색결과 10건 처리시간 0.019초

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

신경회로망을 이용한 비선형 시스템 제어의 실험적 연구 (Experimental Studies of neural Network Control Technique for Nonlinear Systems)

  • 정슬;임선빈
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

미정보 환경 하에서 신경회로망 힘추종 로봇 제어 기술의 실험적 연구 (Experimental Studies on Neural Network Force Tracking Control Technique for Robot under Unknown Environment)

  • 정슬;임선빈
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.338-344
    • /
    • 2002
  • In this paper, neural network force tracking control is proposed. The conventional impedance function is reformulated to have direct farce tracking capability. Neural network is used to compensate for all the uncertainties such as unknown robot dynamics, unknown environment stiffness, and unknown environment position. On line training signal of farce error for neural network is formulated. A large x-y table is built as a test-bed and neural network loaming algorithm is implemented on a DSP board mounted in a PC. Experimental studies of farce tracking on unknown environment for x-y table robot are presented to confirm the performance of the proposed technique.

저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정 (Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot)

  • 최경진;이용현;박종국
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.

학습제어기법을 이용한 X-Y Table의 마찰보상 (Friction Compensation of X-Y robot Using a Learning Control Technique)

  • 손경오;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.248-255
    • /
    • 2000
  • Whereas the linear PID controller is widely used for control of industrial servo systems a high precision positioning system is not easy to control only with the PID controller due to uncertain nonlinear dynamics such as friction backlash etc. As a viable means to overcome the difficulty a learning control scheme is proposed in this paper that is simple and straightforward to implement. The proposed learning controller takes full advantage of current feedback capability of the inner-loop of the control system in that electrical motor dynamics as the well as mechanical part of X-Y positioning system is included in the learning control scheme, The experimental results are given to demonstrate its feasibility and effectiveness in terms of convergence precision of tracking and robustness in comparison with the conventional control method.

  • PDF

주배선반용 로봇 스위치 보드 시스템의 개발 (A Development of a Robotic Switch Board System for Main Distributing Frames)

  • 성영휘;정해;이수영;안희욱
    • 로봇학회논문지
    • /
    • 제4권2호
    • /
    • pp.155-162
    • /
    • 2009
  • A main distributing frame(MDF) is an interface unit that is used to connect office equipment cables in a telephone company to subscriber cables. Until now, there is no automated switching system for MDFs in Korea. Manual handling of an MDF has some drawbacks; It is time-consuming, very cumbersome, and expensive. It also makes maintenance hard. An automated main distributing frame system is proposed and commercialized in Japan. In that system, a robot gripper inserts connecting pins into the cross point holes of a matrix board, which reveals several disadvantages in the aspects of space, maintenance, fault tolerance, and economical efficiency. This paper describes a newly developed robotic switch board system for MDFs. In the developed system, switches are placed at the cross point of a matrix board. There is one robot in between two switch units, so one robot deals with two switch units. In the system, positioning the robot, opening and closing switches can be done by using only a pair of motors and a pair of solenoids. The newly developed system is compact in size, reduces cost, and shows high reliability.

  • PDF

신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구 (Experimental Studies of Neural Network Control Technique for Nonlinear Systern)

  • 임선빈;정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가 (Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot)

  • 박재홍;반욱;최태영;권현일;조동일;김광수
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

전자 오븐의 누설 고주파 자동 검사 시스템 설계와 제작 (Design and manufacture of atomatic microwave leakage inspection system)

  • 이만형;송지복;이석희;정영철;안희태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.492-496
    • /
    • 1987
  • The testing philosophy and control schemes are investigated and applied to construct the Automatic Microwave Leakage Inspection System (AMLIS) . AMLIS is consists of three major parts such as Material Handling Mechanism, Fine Positioning Mechanism and Scanning Mechanism. The material Handling unit is designed to perform loading and unloading microwave oven onto the testing point by pneumatic cylinder and vacuum pump. The Fine positioning part includes X-Y-.THETA. table and distance sensing equipment. The scanning part is composed of five SCARA robots, which traverse X-Y-Z catesian coordinates respectively. The leakage testing probes are placed at the end of this each robot then the path and speed are both controlled via microprocessors. A performance test of this system combined with electric parts and software is done and the basic major function of system are accomplished.

  • PDF

PAL-XFEL 빔라인 허치 구조물 개발 (The Development of Beamline Hutch Structures at PAL-XFEL)

  • 김승남;김명진;김성한;김영찬;신호철;김지화;김경숙;김광우;엄인태
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.567-577
    • /
    • 2016
  • The hutches which are installed in the beamline are largely classified into two, i.e XPP (X-ray pump probe) and CXI (Coherent X-ray image). Laser room is installed on the hutch and provides laser to XPP and CXI simultaneously. And two hutches have heavy crane to install some optics equipments. Safety and reliability of hutch structures should be taken into account for the precise operating of the laser facilities, so vibration analysis is essential to do this. The main purpose of vibration analysis is to install hutch structures with large stiffness. We have changed materials specification several times to install hutch structures having strong stiffness. Now hutch structures were installed and checked vibration status at laser room and XPP hutch. The results of laser table and robot arm satisfy vibration criteria. This paper explains about the design and vibration analysis of hutch structures.