• Title/Summary/Keyword: X-Ray scattering

Search Result 455, Processing Time 0.028 seconds

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

Crystal Structure Refinement of $SnO_{2}$ Thin Film Using X-ray Scattering (X-선 산란을 이용한$SnO_{2}$ 박막의 결정구조 정밀화)

  • Kim, Yong-Il;Nam, Seung-Hoon;Park, Jong-Seo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1939-1943
    • /
    • 2003
  • The precise structural analysis of $SnO_{2}$ thin film, which was prepared by PECVD and thickness 2400 ${\AA}$, was tried to do the structural refinement using X -ray diffraction data. The observed diffraction patterns of $SnO_{2}$ thin film had the strongly preferred orientation effect. WIMV method was used to correct the preferred orientation effect. The final weighted R-factor, $R_{WD}$ was 7.92 %. The lattice parameters, a = b == 4.7366(1) ${\AA}$ and c = 3.1937(1) ${\AA}$, were almost in accordance with ones of $SnO_{2}$ powder.

  • PDF

Vacuum Carbonization of Nanometer Tungsten Powder with Carbon Black

  • Luo, Ji;Lin, Tao;Guo, Zhi-meng;Jia, Chengchang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.442-443
    • /
    • 2006
  • Vacuum carbonization of nanometer tungsten powder was investigated in a simple designed apparatus. An X-Y recorder was used to plot differential thermal analysis (DTA) curves to determine starting temperature of carbonization of four samples with different specific surface area. The product was detected by X-ray Diffraction (XRD) and small angle X-ray scattering (SAXS). The results show that finer tungsten powder has lower starting temperature of carbonization. Tungsten powder, which BET surface area is $32.97m^2/g$, is completely carbonized to tungsten carbide at $1050^{\circ}C$, although the starting temperature is $865^{\circ}C$. Particle grows sharply before carbonization.

  • PDF

X-Ray Triple Crystal Diffraction Spectrometer and Its Applications (X-Ray Triple Crystal Diffraction Spectrometer의 제작과 그 응용)

  • Park Young-Han;Yeom Byo-Young;Yoon Hyng-Guen;Min Suk-ki;Park Young Joo
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.20-25
    • /
    • 1997
  • Two experimental methods have been developed for high resolution measurement of x-ray scattering. The methods used were (1) an x-ray double crystal diffraction (DCD) spectrometer set-up and (2) an x-ray triple crystal diffraction (TCD) spectrometer set-up. With the DCD arrangement of Si(511)-sample(hkl), rocking curves have been plotted for Si (333), Si(004) and GaAs(004). Also, with the TCD arrangement of Si(111)-Si(111)-Si(511)-sample(hkl) including monolithic monocro-collimator and $K_{\alpha1}$ selector, rocking curves have been plotted for Si(333), Si(004) and GaAs(004). The results of FWHM by DCD and TCD set-up have been compared each other and discussed. The reflection topographs (004) and (115) in an $In_{0.037}Ga_{0.0963}As/GaAs$ sample have been obtained by DCD set-up.

  • PDF

Surface-Enhanced Raman Scattering of Benzenethiol Adsorbed on Silver-Exchanged Copper Powders

  • Shin, Kuan-Soo;Ryoo, Hyun-Woo;Lee, Yoon-Mi;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.445-449
    • /
    • 2008
  • Micrometer-sized copper (mCu) powders are weakly surface-enhanced Raman scattering (SERS) active by the excitation at 632.8 nm, but nearly ineffective as a SERS substrate at 514.5 nm excitation. The SERS activity of mCu powders at both excitation wavelengths can be increased dramatically by a simple method of the galvanic exchange reaction with AgNO3 in aqueous medium. In this work, the SERS activity of the Ag-exchanged Cu powders (mCu@Ag) has been evaluated by taking a series of Raman spectra using benzenethiol (BT) as the probe molecule. It is clearly confirmed by field emission scanning electron microscopy and X-ray diffractometry that the SERS activity of mCu@Ag powders is, in fact, highly dependent on the extent of galvanic reaction.

Exploring the Extra Component in the Gamma-ray Emission of the New Redback Candidate 3FGL J2039.6-5618

  • Ng, Cho-Wing;Cheng, Kwong-Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • A redback system is a binary system composed of a pulsar and a main sequence star. The inverse Compton (IC) scattering between the stellar soft photons and the relativistic pulsar wind will generate orbital-modulating GeV photons. We look for these IC emissions from redback systems. A multi-wavelength observation of an unassociated gamma-ray source, 3FGL J2039.6-5618, by Salvetti et al. (2015) detected an orbital modulation with a period of 0.2 days in both X-ray and optical cases. They suggested 3FGL J2039.6-5618 to be a new redback candidate. We analyzed the gamma-ray emission of 3FGL J2039.6-5618 using the data from the Fermi large area telescope (Fermi-LAT) and obtained the spectrum in different orbital phases. We propose that the spectrum has orbital dependency and estimate the characteristic energy of the IC emission from the stellar-pulsar wind interaction.