• Title/Summary/Keyword: X-Ray scattering

Search Result 455, Processing Time 0.026 seconds

Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering

  • Kim, Tae-Kyu;Zuo, Xiaobing;Tiede, David M.;Ihee, Hyot-Cherl
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1676-1680
    • /
    • 2004
  • We demonstrate that wide-angle X-ray scattering pattern from photoactive yellow protein (PYP) in solution using a high flux third generation synchrotron X-ray source reflects not only the overall structure, but also fine structures of the protein. X-ray scattering data from PYP in solution have been collected in q ranges from 0.02 ${\AA}^{-1}$ to 2.8 ${\AA}^{-1}$. These data are sensitive to the protein structure and consistent with the calculation based on known crystallographic atomic coordinates. Theoretical scattering patterns were also calculated for the intermediates during the photocycle of PYP to estimate the feasibility of time-resolved wide-angle X-ray scattering experiments on such proteins. These results demonstrate the possibility of using the wide-angle solution X-ray scattering as a quantitative monitor of photo-induced structural changes in PYP.

Real-time X-ray Scattering as a Nanostructure Probe for Organic Photovoltaic Thin Films

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.181-181
    • /
    • 2013
  • Recently, nanostructure and the molecular orientation of organic thin films have been largely paid attention due to its importance in organic electronics such as organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs). Among various methods, the diffraction and scattering techniques based on synchrotron x-rays have shown powerful results in organic thin film systems. In this work, we introduce the in-situ annealing system installed at PLS-II (Pohang Light Source II) for organic thin films by simultaneously conducting various x-ray scattering measurements of x-ray reflectivity, conventional x-ray scattering, grazing incidence wide angle x-ray scattering (GI-WAXS) and so on. Using the in-situ measurement, we could obtain real time variation of nanostructure as well as molecular orientation during thermal annealing in metal-phthalocyanine thin films. The variation of surface and interface also could be simultaneously investigated by the x-ray reflectivity measurement.

  • PDF

Calibration-free real-time organic film thickness monitoring technique by reflected X-Ray fluorescence and compton scattering measurement

  • Park, Junghwan;Choi, Yong Suk;Kim, Junhyuck;Lee, Jeongmook;Kim, Tae Jun;Youn, Young-Sang;Lim, Sang Ho;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1297-1303
    • /
    • 2021
  • Most thickness measurement techniques using X-ray radiation are unsuitable in field processes involving fast-moving organic films. Herein, we propose a Compton scattering X-ray radiation method, which probes the light elements in organic materials, and a new simple, non-destructive, and non-contact calibration-free real-time film thickness measurement technique by setting up a bench-top X-ray thickness measurement system simulating a field process dealing with thin flexible organic films. The use of X-ray fluorescence and Compton scattering X-ray radiation reflectance signals from films in close contact with a roller produced accurate thickness measurements. In a high-thickness range, the contribution of X-ray fluorescence is negligible, whereas that of Compton scattering is negligible in a low-thickness range. X-ray fluorescence and Compton scattering show good correlations with the organic film thickness (R2 = 0.997 and 0.999 for X-ray fluorescence and Compton scattering, respectively, in the thickness range 0-0.5 mm). Although the sensitivity of X-ray fluorescence is approximately 4.6 times higher than that of Compton scattering, Compton scattering signals are useful for thick films (e.g., thicker than ca. 1-5 mm under our present experiment conditions). Thus, successful calibration-free thickness monitoring is possible for fast-moving films, as demonstrated in our experiments.

The Allosteric Transition of the Chaperonin GroEL from Escherichia coli as Studied by Solution X-Ray Scattering

  • Kuwajima Kunihiro;Inobe Tomonao;Arai Munehito
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.166-172
    • /
    • 2006
  • This is a short review article of our recent studies on the ATP-induced, allosteric conformational transition of the chaperonin GroEL complex by solution X-ray scattering. We used synchrotron X-ray scattering with a two-dimensional, charge-coupled, device-based X-ray detector to study (1) the specificity of the chaperonin GroEL for its ligand that induced the allosteric transition, and (2) the identification of the allosteric transition of GroEL in its complicated kinetics induced by ATP. Due to the dramatically increased sensitivity of the X-ray scattering technique based on the use of the two dimensional X-ray detector and synchrotron radiation, different allosteric conformational states of GroEL populated under different conditions were clearly distinguished from each other. It was concluded that solution X-ray scattering is an extremely powerful tool for investigating the equilibrium and kinetics of cooperative conformational transitions of oligomeric protein complex, especially when combined with other spectroscopic techniques such as fluorescence spectroscopy.

Studies on Nanostructured Amorphous Carbon by X-ray Diffraction and Small Angle X-ray Scattering

  • Dasgupta, K.;Krishna, P.S.R.;Chitra, R.;Sathiyamoorth, D.
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.10-13
    • /
    • 2003
  • The structural studies of amorphous isotropic carbon prepared from pyrolysis of phenol formaldehyde resin have been carried out using X-ray diffraction. X-ray diffraction from as prepared sample at $1000^{\circ}C$ and a sample treated at $1900^{\circ}C$ revealed that both are amorphous even though there are small differences in short range order. It is found that both are graphite like carbon (GLC) with predominantly $sp^2$ hybridization. Small angle X-ray scattering results show that as prepared sample mainly consists of thin two dimensional platelets of graphitic carbon whereas they grow in thickness to become three dimensional materials of nano dimensions.

  • PDF

X-ray scattering study on the electric field-induced interfacial magnetic anisotropy modulation at CoFeB / MgO interfaces

  • Song, Kyung Mee;Kim, Dong-Ok;Kim, Jae-Sung;Lee, Dong Ryeol;Choi, Jun Woo
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1212-1217
    • /
    • 2018
  • The electric field-induced modifications of magnetic anisotropy in CoFeB/MgO systems are studied using X-ray resonant magnetic scattering and magneto-optical Kerr effect. Voltage dependent changes of the magnetic anisotropy of -12.7 fJ/Vm and -8.32 fJ/Vm are observed for Ta/CoFeB/MgO and Hf/CoFeB/MgO systems, respectively. This implies that the interfacial perpendicular magnetic anisotropy is reduced (enhanced) when electron density is increased (decreased). X-ray resonant magnetic scattering measurements reveal that the small in-plane magnetic component of the remanent state of CoFeB/MgO systems with weak magnetic anisotropy changes depending on the applied voltage leading to modification of the magnetic anisotropy at the CoFeB/MgO interface.

Interfacial Diffusion in Fe/Cr Magnetic Multilayers Studied by Synchrotron X-ray Techniques (방사광 x-선 기법에 의한 다층형 Fe/Cr 자성박막의 계면확산 연구)

  • 조태식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.223-227
    • /
    • 2004
  • We have studied the interfacial diffusion of Fe/Cr multilayers using synchrotron x-ray techniques, such as x-ray reflectivity, extended x-ray absorption fine structures (EXAFS), and high-resolution x-ray scattering. The results of x-ray reflectivity indicated that the interfacial roughness of Fe/Cr multilayers increased with the Cr-layer thickness. The Fourier transform (FT) of EXAFS data clearly showed that the Fe atoms dominantly diffused into the stable Cr layers at the Fe/Cr interface. The results of high-resolution x-ray scattering supported the interfacial diffusion of Fe atoms. Out study revealed that the dominantly interfacial diffusion of Fe atoms into the Cr layers effects the interfacial roughness of the Fe/Cr multilayers.

Coherent x-ray scattering to study dynamics in thin films (결맞는 X-선 산란을 이용한 박막의 표면 거동 연구)

  • Kim, Hyun-Jung
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.143-146
    • /
    • 2005
  • A new method of x-ray photon correlation spectroscopy (XPCS) using coherent x-rays is developed recently for probing the dynamics of surface height fluctuations as a function of lateral length scale. This emerging technique applies the principles of dynamic light scattering in the x-ray regime. The short wavelength and slow time scales characteristic of XPCS extend the phase space accessible to scattering studies beyond some restrictions by light and neutron. In this paper, we demonstrate XPCS to study the dynamics of surface fluctuations in thin supported polymer films. We present experimental verification of the theoretical predictions for the wave vector and temperature dependence of the capillary wave relaxation times for the supported polymer films at melt for the film thicknesses thicker than 4 times of the radius of gyration of polymer. We observed a deviation from the conventional capillary wave predictions in thinner films. The analysis will be discussed in terms of surface tension, viscosity and effective interactions with the substrate.

Assessment of Multiple Delamination in Laminated Composites for Aircrafts using X-ray Backscattering (X-ray 후방산란 기술을 이용한 항공기용 복합재료의 다중 층간 박리 평가)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • A Compton X-ray backscatter technique has been developed to quantitatively assess impact damage in quasi-isotropic laminated composites made by a drop-weight tester. X-ray backscatter imaging system with a slit-type camera is constructed to obtain a cross-sectional profile of impact-damaged laminated composites from the electron-density variation of the cross section. A nonlinear scattering model based on Boltsman equation is introduced to compute Compton X-ray backscattering field for the defect assessment. An adaptive filter is also used to reduce noises from many sources including quantum noise and irregular distributions of fibers and matrix in composites. Delaminations masked or distorted by the first delamination are detected and characterized effectively by the Compton X-ray backscatter technique, both in width and location, by application of error minimization algorithm.

The Performance Test of Anti-scattering X-ray Grid with Inclined Shielding Material by MCNP Code Simulation

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • Background: The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. Materials and Methods: The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. Results and Discussion: The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination. Conclusion: It was shown that the grid of inclined type had better performance than that of parallel one.