• Title/Summary/Keyword: X-Ray Photoelectron Spectroscopy

Search Result 1,388, Processing Time 0.038 seconds

Advanced Analysis Techniques for Oxide Cathodes

  • Je, Jung-Ho;Kim, In-Woo;Seol, Seung-Kwon;Kwon, Yong-Bum;Cho, Chang-Sik;Weon, Byung-Mook;Park, Gong-Seog;Hwang, Cheol-Ho;Hwu, Yeukuang;Tsai, Wen-Li
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1155-1156
    • /
    • 2003
  • The advanced analysis techniques such as high resolution X-ray absorption spectroscopy (XAS), X-ray scattering, and photoelectron emission microscope (PEEM) using synchrotron radiation are probably able to open new opportunities for improving the performances of oxide cathodes with more clear and deep understanding.

  • PDF

Reaction of NO on Vanadium Oxide Surfaces: Observation of the NO Dimer Formation

  • Jeong, Hyun-Suck;Kim, Chang-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.413-416
    • /
    • 2007
  • The adsorption and surface reactions of NO on a VO/V(110) surface have been investigated using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure, and temperature programmed desorption (TPD) technique. NO is molecularly adsorbed on VO/V(110) at 80 K. As the surface coverage of NO increases, the NO dimer is formed on the surface at 80 K. Both NO and (NO)2 are adsorbed on the surface with the N-O bond perpendicular to the surface. (NO)2 decomposes at ~100 K and the reaction product is desorbed as N2O. Decomposition of NO takes place when the surface temperature is higher than 273 K.

Study on visible emission of Cu-ion-doped perovskite hafnate in view of excitation energy dependence

  • Lee, D.J.;Lee, Y.S.;Noh, H.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.8-11
    • /
    • 2015
  • We studied on the visible emission of Cu-ion-doped perovskite hafnate $SrHfO_3$ (SHO:Cu) with the photo-excitation energy dependence. The polycrystalline SHO:Cu samples were newly synthesized in the solid state reaction method. From the X-ray diffraction measurement it was found that the crystalline structure of SHO:Cu is nearly identical to that of undoped $SrHfO_3$. Interestingly, the photoluminescence excitation (PLE) spectra change significantly with the emission energy, which is linked to the strong dependence of the visible emission on the photo-excitation energy. This unusual emission behavior is likely to be associated with the mixed valence states of the doped Cu ions, which were revealed by X-ray photoelectron spectroscopy. We compared our finding of tunable visible emission in the SHO:Cu compounds with the cases of similar materials, $SrTiO_3$ and $SrZrO_3$ with Cu-ion-doping.

Effects of Oxygen on the Properties of Mg-doped Zinc Tin Oxide Films Prepared by rf Magnetron Sputtering (rf 마그네트론 스퍼터링으로 증착한 Mg-doped Zinc Tin Oxide막의 특성에 미치는 산소의 영향)

  • Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.373-379
    • /
    • 2013
  • Mg-doped zinc tin oxide (ZTO:Mg) thin films were prepared on glasses by rf magnetron sputtering. $O_2$ was introduced into the chamber during the sputtering. The optical properties of the films as a function of oxygen flow rate were studied. The crystal structure, elementary properties, and depth profiles of the films were investigated by X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS), respectively. Bottom-gate transparent thin film transistors were fabricated on $N^+$ Si wafers, and the variation of mobility, threshold voltage etc. with the oxygen flow rate were observed.

Effect of the Substrate Temperature on the Copper Oxide Thin Films

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.71-71
    • /
    • 2010
  • Copper oxide thin films were deposited on the p-type Si(100) by r.f. magnetron sputtering as a function of different substrate temperature. The deposited copper oxide thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM and SE data show that the thickness of the copper oxide films was about 170 nm. AFM images show that the surface roughness of copper oxide films was increased with increasing substrate temperature. As the substrate temperature increased, monoclinic CuO (111) peak appeared and the crystal size decreased while the monoclinic CuO (-111) peak was independent on the substrate temperature. The oxidation states of Cu 2p and O 1s resulted from XPS were not affected on the substrate temperature. The contact angle measurement was also studied and indicated that the surface of copper oxide thin films deposited high temperature has more hydrophobic surface than that of deposited at low temperature.

  • PDF

The Characterization of Mn Based Self-forming Barriers on low-k Samples with or without UV Curing Treatment

  • Park, Jae-Hyeong;Han, Dong-Seok;Gang, Min-Su;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.2-352.2
    • /
    • 2014
  • In this present work, we report a Cu-Mn alloy as a materials for the self-forming barrier process. And we investigated diffusion barrier properties of self-formed layer on low-k dielectrics with or without UV curing treatment. Cu alloy films were directly deposited onto low-k dielectrics by co-sputtering, followed by annealing at various temperatures. X-ray diffraction revealed Cu (111), Cu (200) and Cu (220) peaks for both of Cu alloys. The self-formed layers were investigated by transmission electron microscopy. In order to compare barrier properties between Mn-based interlayer interlayer, thermal stability was measured with various low-k dielectrics. X-ray photoelectron spectroscopy analysis showed that chemical compositions of self-formed layer. The compositions of the Mn based self-formed barriers after annealing were determined by the C concentration in the dielectric layers.

  • PDF

Synthesis and Characterization of Tin Nitride Thin Films Deposited by Low Nitrogen Gas Ratio

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.173.2-173.2
    • /
    • 2014
  • Thin nitride thin films were synthesized by reactive radio-frequency magnetron sputtering in the ultra high vacuum (UHV) chamber. To control the characteristics of thin films, tin nitride thin films were obtained various argon and nitrogen gas mixtures, especially low nitrogen gas ratios. Tin nitride thin films were analyzed with alpha step, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and 4 point probe measurement. The result of alpha step and SEM showed that the thickness of thin nitride thin films were decreased with increasing nitrogen gas ratios. The metallic tin structure was decreased and the amorphous tin nitride structure were observed by XRD with higher nitrogen gas ratios. The oxidation state of tin and nitride were studied with high resolution Sn 3d and N 1s XP spectra.

  • PDF

Organic additive effects in physical and electrical properties of electroplated Cu thin film

  • Lee, Yeon-Seung;Lee, Yong-Hyeok;Gang, Seong-Gyu;Ju, Hyeon-Jin;Na, Sa-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. In this study, we investigated the characteristics of electroplated Cu films according to the variation of concentration of organic additives. The plating electrolyte composed of $CuSO_4{\cdot}5H_2O$, $H_2SO_4$ and HCl, was fixed. The sheet resistance was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the organic additives play an important role in formation of Cu film with lower resistivity by EPD.

  • PDF

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS).

  • Kim, Ju-Yeong;Chryssoulis, S.;Gong, Bong-Seong
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.50-57
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography (edges and dislocations are preferred sites for physicochemical reactions) control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species with the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area.

  • PDF

Annealing effects of ZnO:Er films on UV emission (ZnO:Er막의 UV 발광에 미치는 열처리 효과)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.316-321
    • /
    • 2009
  • Er-doped ZnO(ZnO:Er) films were deposited onto MgO wafers by ultrasonic spray pyrolysis at 550 $^{\circ}C$ varying the concentration of Er in the deposition source from 0.5 wt% to 3.0 wt%. Annealing of the films in a vacuum was carried out to increase the intensity of ultraviolet(UV) emission from the films. The annealing temperature was between 600$^{\circ}C$ and 800$^{\circ}C$. The crystallographic properties and surface morphology of the films were investigated by X-ray diffraction(XRD)and scanning electron microscope(SEM), respectively. The properties of photoluminescence(PL) for the films were investigated by the dependence of PL spectra on the annealing temperature. X-ray photoelectron spectroscopy(XPS) was conducted to find the composition change in the films by the annealing.