• 제목/요약/키워드: X-Ray CT

Search Result 960, Processing Time 0.027 seconds

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.

INFRARED AND HARD X-RAY DIAGNOSTICS OF AGN IDENTIFICATION FROM THE AKARI AND SWIFT/BAT ALL-SKY SURVEYS

  • Matsuta, K.;Gandhi, P.;Dotani, T.;Nakagawa, T.;Isobe, N.;Ueda, Y.;Ichikawa, K.;Terashima, Y.;Oyabu, S.;Yamamura, I.;Stawarz, L.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.285-286
    • /
    • 2012
  • We combine data from two all-sky surveys, the Swift/Burst Alert Telescope 22 Month Source Catalog and the AKARI Point Source Catalogue, in order to study the connection between the hard X-ray (> 10 keV) and infrared (IR) properties of local active galactic nuclei (AGN). We find two photometric diagnostics are useful for source classification: one is the X-ray luminosity vs. IR color diagram, in which type 1 radio-loud AGN are well isolated from other AGN. The second one uses the X-ray vs. IR color-color diagram as a redshift-independent indicator for identifying Compton-thick (CT) AGN. Importantly, CT AGN and starburst galaxies in composite systems can also be separated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new surveys such as with WISE and NuSTAR.

Clinical Applications of Dual-Energy CT

  • Saira Hamid;Muhammad Umer Nasir;Aaron So;Gordon Andrews;Savvas Nicolaou;Sadia Raheez Qamar
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.970-982
    • /
    • 2021
  • Dual-energy CT (DECT) provides insights into the material properties of tissues and can differentiate between tissues with similar attenuation on conventional single-energy imaging. In the conventional CT scanner, differences in the X-ray attenuation between adjacent structures are dependent on the atomic number of the materials involved, whereas in DECT, the difference in the attenuation is dependent on both the atomic number and electron density. The basic principle of DECT is to obtain two datasets with different X-ray energy levels from the same anatomic region and material decomposition based on attenuation differences at different energy levels. In this article, we discuss the clinical applications of DECT and its potential robust improvements in performance and postprocessing capabilities.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Research on Surface Contamination Analysis of Radiology Examination Equipment in Medical Institutions (의료기관 내 영상의학 검사 장비의 표면 오염도 분석 연구)

  • Shin-Woo Lee;Da-eun Kim;Chae-won Mun;Gap-Jung Kim;Sang-Ha Kim;Hye-mi Park;Se-Jong Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.171-177
    • /
    • 2024
  • In this study, two general X-ray device, CT, and MRI inspection devices were selected from general hospitals in the Daejeon area and an experiment was conducted to predict the level of infection by measuring the surface contamination of the inspection devices at different times and to use it as basic data for infection prevention. As a result, the surface contamination level by time zone for general X-ray devices and MRI examination devices was in the order of 13H > 8H > 16H, and for CT examination devices, it was 13H > 16H > 8H, which appeared to be influenced by the number of tests. In addition, the surface contamination results for each part of the test device showed that the highest ATP contamination value was found on the stand bucky handle for the general X-ray device, the headrest for the CT examination device, and the operation switch for the MRI examination device, which was closely related to the number of contacts. As a result of comparing before and after disinfection, all devices showed a significant decrease after disinfection. Based on the results of the experiment, it is believed that it can be used as basic data to identify the level of contamination in radiology laboratories and prevent infectious diseases.

Wavelet-based Noise reduction filter for 3-dimensional Computed Tomography brian angiography (Wavelet을 이용한 CT 3차원 뇌혈관에서의 노이즈 제거 필터 구현)

  • Seong Yeol-Hun;Bak Hyeon-Jae;Kang Hang-Bong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.859-861
    • /
    • 2005
  • X-ray를 이용한 CT(Computed Tomography : 이하 CT)영상은 사물에 대해 회전하면서 X-ray가 투과하여 감약 정도에 따라서 영상을 획득하지만 검사 목적과는 관계없이 발생되는 통계적인 오차로 인해 정확한 CT영상의 구성을 교란하거나 방해하여 영상의 질을 저하시키고 미세 부분의 관찰 능력을 감소시키는 장해 음영인 아티팩트(artifact)라는 노이즈가 발생한다. 이러한 노이즈를 제거하는 필터를 설계 할 때는 두 가지 고려해야 할 사항이 있는데 첫째는 영상내의 노이즈을 정확히 판단하여 효과적으로 제거해야 하며, 둘째로는 원래의 영상에 가깝도록 경계와 같은 세부 영역을 보존해야 한다는 점이다. 기존에는 mean 필터나 median 필터, 그리고 Gaussian 필터 등을 사용했지만 상세한 부분을 보존하기에는 실패하는 단점이 있다. 따라서 본문에서는 wavelet 변환을 하여 영상의 주파수 대역을 저주파 영역과 고주파 영역으로 분리하여 각각의 영역에서 노이즈를 제거할 수 있도록 적합한 필터를 설계하고 방법을 제안하여 그 필터를 CT 3차원 뇌혈관 영상에 적용하여 많은 노이즈를 제거하였고 낮은 Threshold값에서도 작은 혈관을 관찰 할 수 있었다.

  • PDF

X-ray CT monitoring of macro void development in mortars exposed to sulfate attack

  • Tekin, Ilker;Birgul, Recep;Aruntas, Huseyin Y.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2018
  • This study reports the results of nondestructive monitoring of macro void developments in mortars manufactured with both ordinary Portland cement and sulfate resistant cement. Two types of curing were utilized; tap water curing and another curing environment that contains 5% $Na_2(SO_4)$ solution. Being the primary objective of this study, macro void developments of the mortar specimens were monitored by X-ray Medical Computerized Tomography. Compressive strength tests and water absorption tests were conducted on specimens that were kept in both curing environments for a duration of 560 days. Data analyses yielded consistent results among the three tests used in this experimental study. Macro void ratios of mortars decreased at the beginning of experiments for a certain period; afterwards, macro void ratios increased. The objective of this study was accomplished as anticipated since X-CT image analysis was able to nondestructively monitor macro void development process in cement mortars.