• Title/Summary/Keyword: X선 투과성

Search Result 56, Processing Time 0.021 seconds

Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15) (루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동)

  • Seo, Yoon-Ah;Kim, Hyung Kook;Shin, Jeong Hun;Kim, Il;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.608-614
    • /
    • 2009
  • In this work, ruthenium substituted SBA-15's(Ru-SBA15's) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, $EO_{20}PO_{70}EO_{20}$, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15's for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15's was determined by both the Barrett-Joyner-Halenda(BJH)($D_{BJH}$) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method($D_{BdB-FHH}$). The $D_{BJH}$ and $D_{BdB-FHH}$ of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the $N_2$ adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively $612.7m^2/g$, and $573.3m^2/g$. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.

Study on the effect of p-type doping in mid-infrared InAs/GaSb superlattice photodetectors

  • Han, Im-Sik;Lee, Yong-Seok;Nguyen, Tien Dai;Lee, Hun;Kim, Jun-O;Kim, Jong-Su;Gang, Sang-U;Choe, Jeong-U;Kim, Ha-Sul;Ku, Zahyun;Lee, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.170.1-170.1
    • /
    • 2015
  • 안티모니 (Sb)를 기반으로 한 제2형 초격자 (Type II superlattice, T2SL)구조 적외선 검출기 연구는 2000년대 들어 Sb 계열의 화합물 반도체 성장 기술이 발전함에 따라 HgCdTe (MCT), InSb, 양자우물 적외선 검출기 (QWIP)를 대체할 수 있는 고성능의 양자형 적외선 검출 소재로 부상하였으며, 현재 전 세계적으로 활발한 연구가 진행되고 있다. 특히, 기존의 양자형 적외선 검출소자에 비해 전자의 유효질량이 상대적으로 커서 밴드 간의 투과전류가 줄어들 뿐만 아니라, 전자와 정공이 서로 다른 물질 영역에 분포하여 Auger 재결합률을 효과적으로 줄일 수 있어 상온 동작이 가능한 소재로 주목을 받고 있다. 또한, T2SL 구조는 초격자를 구성하는 물질의 두께나 조성 변화를 통한 밴드갭 변조가 용이하여 단파장에서 장파장 적외선에 이르는 광범위한 파장 대역에서 동작이 가능할 뿐만 아니라 구조적 변화를 통해 이중 대역을 동시에 검출 할 수 있는 차세대 적외선 열영상 소자로 알려져 있다. 본 연구에서는 분자선 에피택시(MBE)법을 이용하여 300 주기의 InAs/GaSb (10/10 ML) 제2형 초격자 구조를 성장하여 적외선 검출소자를 제작하였다. 제2형 초격자 구조를 구성하는 물질계에 p-type dopant인 Be을 이용하여 각각 도핑 농도가 다른 시료를 성장하였다. 이때 p-type 도핑 농도는 각각 $1/5/10{\times}10^{15}cm^{-3}$로 변화를 주었다. 성장된 시료의 구조적 특성 분석을 위해 고분해능 X선 회절 (High resolution X-ray diffraction, HRXRD)법을 이용하였으며, 초격자 한 주기의 두께가 6.2~6.4 nm 로 설계된 구조와 동일하게 성장됨을 확인 하였으며, 1차 위성피크의 반치폭은 30~80 arcsec로 우수한 결정성을 가짐을 확인하였다. 적외선 검출을 위한 $410{\times}410{\mu}m^2$ 크기의 단위 소자 공정을 진행하였으며 이때 적외선의 전면 입사를 위해 소자 위에 $300{\mu}m$의 윈도우 창을 제작하였다. 단위 소자의 측벽에는 표면 누설 전류가 흐르는데 이를 방지하기 위해서 표면보호막을 증착하였다. 적외선 검출 소자의 전기적 특성 평가를 위해 각각의 시료의 암전류 (dark current)와 파장별 반응 (spectral response)을 온도별로 측정하여 비교 및 분석하였다.

  • PDF

The Effect of Additional Elements on the Tailored Magnetic Properties of Electrochemically Prepared CoPtP-X Alloys (전기화학적으로 제조한 CoPtP-X합금의 첨가제 효과에 따른 맞춤형 자기적 성질)

  • Park, H.D.;Lee, K.H.;Kim, G.H.;Jeung, W.Y.;Choi, D.H.;Lee, W.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.94-98
    • /
    • 2005
  • Coptp films with the additive elements (X=Fe, Mn) of varying concentrations were prepared by in-situ electrodeposition, to tailor their magnetic properties. Alloys of CoPtP-X (X=Fe, Mn) were synthesized by changing the solution concentrations of Fe and Mn for electrodeposition. In the electrodeposited CoFePtP alloys, preferred orientation of the electrodeposited films changed from hexagonal (001) to (100) direction with increasing iron contents as revealed by X-ray diffraction, and these films exhibited various magnetic properties ranging from a typical hard magnetic to a soft magnetic property in accordance with microstructural variations. In the case of Mn addition, excellent hard magnetic property was observed at a specific Mn concentration of 0.0126 M in the electrolyte, with the coercivity of 4630 Oe and squareness of 0.856 and this was attributed to the fact that magnetization easy-axis (hexagonal c-axis) coincides with the preferred growth orientation of the film confirmed by transmission electron microscopy.

The Effect of Stacking Fault on Thermoelectric Property for n-type SiC Semiconductor (N형 SiC 반도체의 열전 물성에 미치는 적층 결함의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2021
  • This study examined the effects of stacking faults on the thermoelectric properties for n-type SiC semiconductors. Porous SiC semiconductors with 30~42 % porosity were fabricated by the heat treatment of pressed ��-SiC powder compacts at 1600~2100 ℃ for 20~120 min in an N2 atmosphere. XRD was performed to examine the stacking faults, lattice strain, and precise lattice parameters of the specimens. The porosity and surface area were analyzed, and SEM, TEM, and HRTEM were carried out to examine the microstructure. The electrical conductivity and the Seebeck coefficient were measured at 550~900 ℃ in an Ar atmosphere. The electrical conductivity increased with increasing heat treatment temperature and time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The Seebeck coefficients were negative due to nitrogen behaving as a donor, and their absolute values also increased with increasing heat treatment temperature and time. This might be due to a decrease in stacking fault density, i.e., a decrease in stacking fault density accompanied by grain growth and crystallite growth must have increased the phonon mean free path, enhancing the phonon-drag effect, leading to a larger Seebeck coefficient.

An Experimental Method for the Scatter Correction of MV Images Using Scatter to Primary Ratios (SPRs) (산란선 대 일차선비(SPR)를 이용한 MV 영상의 산란 보정을 위한 실험적 방법)

  • Jeon, Hosang;Park, Dahl;Lee, Jayeong;Nam, Jiho;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Lee, Ju Hye;Kim, Dongwon
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.143-150
    • /
    • 2014
  • In general radiotherapy, mega-voltage (MV) x-ray images are widely used as the unique method to verify radio-therapeutic fields. But, the image quality of MV images is much lower than that of kilo-voltage x-ray images due to scatter interactions. Since 1990s, studies for the scatter correction have performed with digital-based MV imaging systems. In this study, a novel method for the scatter correction is suggested using scatter to primary ratio (SPR), instead of conventional methods such as digital image processing or scatter kernel calculations. We measured two MV images with and without a solid water phantom describing a patient body with given imaging conditions, and calculated un-attenuated ratios. Then, we obtained SPR distributions for the scatter correction. For experimental validation, a line-pair (LP) phantom using several Al bars and a clinical pelvis MV image was used. As the result, scatter signals of the LP phantom image were successfully reduced so that original density distribution of the phantom was restored. Moreover, image contrast values increased after SPR correction at all ROIs of the clinical image. The mean value of increases was 48%. The SPR correction method suggested in this study has high reliability because it is based on actually measured data. Also, this method can be easily adopted in clinics without additional cost. We expected that the SPR correction can be an effective method to improve the quality of MV image guided radiotherapy.

Study of the Production Techniques Used in the Goryeo-period Gilt-Bronze Case for Acupuncture in the Collection of the Royal Museums of Art and History, Belgium (벨기에 왕립예술역사박물관 소장 고려시대 금동침통의 과학적 보존처리를 통한 제작기법 연구)

  • Lee, Jaesung;Park, Younghwan
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.147-164
    • /
    • 2022
  • Over 200,000 Korean cultural heritage items are currently located abroad. They have made their way to 22 countries under different circumstances and with unique backgrounds. While some of them continue to contribute to promoting Korean culture around the world, others cannot be exhibited due to damage or poor condition. In view of these circumstances, the Overseas Korean Cultural Heritage Foundation (OKCHF) has since 2013 provided museums and art galleries abroad with support for the conservation, restoration, and utilization of the Korean cultural heritage items that they house. As a part of these efforts and on the occasion of the 120th anniversary of the diplomatic relationship between the Republic of Korea and the Kingdom of Belgium in 2021, a gilt-bronze case for acupuncture needles dating to the Goryeo period (918-1392) from the collection of the Royal Museums of Art and History (RMAH), Belgium was brought to Korea for conservation treatment. The primary purpose of this conservation treatment was to restore the original form of the relic and slow to the degree possible the progress of corrosion. The conservation treatment of the gilt-bronze case followed the fundamental order of conservation treatment: removal of corrosive substances, stabilization, and reinforcement. Since this was the first case of restoring metallic cultural properties under the abovementioned support program by the OKCHF, special methodologies distinct from those available in overseas institutions were required. Diverse scientific methods (e.g., X-ray inspection, CT scanning, 3D microscopy) were applied to identify the metalcraft techniques used in the Goryeo period. The analysis found that several designs, including lotus and scrollwork, were exquisitely engraved on the surface of the case by making dots using a round-edged chisel. A bronze plate engraved with designs was rolled into a cylindrical form. The ends were overlapped by 2 to 3 centimeters and then attached to each other by silver soldering. The overlapping ends were welded flat with nearly no gaps. As the final process in the production, the case was lavishly gilt with gold powder using amalgam gilding. The conservation treatment of the gilt-bronze case for acupunctural needles in the RMAH collection restored the original form of the relic and arrested further corrosion. Above all, it revived the historic and academic value of the overseas Korean cultural heritage through scientific analysis.