• Title/Summary/Keyword: Wrist Motion

Search Result 203, Processing Time 0.022 seconds

Extensor Pollicis Longus Tendon Rupture Following Local Steroid Injection (국소 스테로이드 주사 후에 발생한 장무지신건 파열)

  • Choi, Yun Seok;Kim, Tae Hyung;Lim, Jin Soo;Jun, Young Joon
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.120-123
    • /
    • 2006
  • Spontaneous extensor pollicis longus tendon rupture is commonly caused by attrition of the tendon from trauma or inflammatory processes. We experienced a patient with extensor pollicis longus tendon rupture after steroid injection, in which the rupture may have been caused by the effects of steroid itself as well as direct damage from the needle. A 51-year-old woman complained of inability to extend her right thumb at the first metacarpophalangal & interphalangeal joint level. The patient had a history of local steroid injection into the dorsal & radial side of wrist on two occations, and had no history of trauma or rheumatologic disease. After a physical examination of the patient, we decided to explore the wrist. The patient agreed with operation. Intraoperatively, an incision was made into the wrist and the proximal and distal ends of the ruptured extensor pollicis longus tendon were identified. The defect between the proximal and the distal end was measured to approach 8cm, and a palmaris longus tendon graft was performed. After three months of rehabilitation, the first metacarpophalangal & interphalangeal joint recovered the normal range of motion. Steroid injection has been widely used in various musculoskeletal disorders such as rheumatoid arthritis and osteoarthritis. However, inadvertent steroid injection into the extra or intra articular spaces may lead to tendon rupture. Steroids reduce tensile strength by decreasing tenocyte activity and collagen synthesis. Also, the physical effect of direct needle-stick injury into the mesotenon and blood vessels around the tendon may cause damage. In addition, hematoma and edema may increase pressure around the tendon and compromise blood supply, leading to tendon degeneration and subsequent rupture. When injecting steroid into an articular area, all physicians should have a complete understanding of the surrounding anatomy and always keep in mind the hazards of such procedures.

Implementation and evaluation of the sensor assessing pressure and photoplethysmogram (압력맥파 및 광전용적맥파 검출용 일체형 센서의 구현 및 평가)

  • Kim, Gi-Ryon;Kim, Gwang-Nyeon;Choi, Byeong-Cheol;Jeon, Gye-Rok;Ham, Ki-Young;Suh, Duk-Joon;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Pulse sensors generally have characteristics that cause a analytical error by the interference of signals according to tiny motion of body and pressure applied to skin. To resolve this problem, we implemented the sensor that is capable of simultaneously measuring pressure and PPG(photoplethymogram) in a state attached to skin. Pressure and PPG was recorded at the finger and wrist respectively to evaluate the usefulness of the implemented sensor. Then, it was observed that the shape of PPG from sensor changed by pressure pushing down skin. Results of this study suggested that it is possible to monitor a degree of skin pressurization and to guarantee a reliable measurement by simultaneously measuring pressure and PPG using implemented integrated sensor when measuring PPG on the wrist or the finger.

AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features (시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식)

  • Hwang, Seung-Jun;Ahn, Gwang-Pyo;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The task of 3D gesture recognition for controlling equipments is highly challenging due to the propagation of 3D smart TV recently. In this paper, the AdaBoost algorithm is applied to 3D gesture recognition by using Kinect sensor. By tracking time interval trajectory of hand, wrist and arm by Kinect, AdaBoost algorithm is used to train and classify 3D gesture. Experimental results demonstrate that the proposed method can successfully extract trained gestures from continuous hand, wrist and arm motion in real time.

Design of Upper-limb Rehabilitation Device with Power-assist Function for Stroke Survivals (뇌졸중 환자용 동력보조형 상지재활훈련기의 설계)

  • Bae, J.H.;Moon, I.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • In this paper, we proposed a design of upper-limb rehabilitation device with power-assist function for stroke survivals. The designed upper-limb rehabilitation device has three degrees of freedom; it is possible to perform flexion and extension motions of wrist, index finger and the other fingers except the thumb independently. The power-assist for wrist motion is performed by a pneumatic double-acting cylinder, but the fingers are actuated by electrical linear actuators to assist motions. A prototype upper-limb rehabilitation device and its controller were implemented. The position controller showed 0.8 mm errors in the steady-state. Experimental results showed that the proposed upper-limb rehabilitation device with power-assist function is feasible.

Quantification of Clinical assessment of Rigidity in patients with Parkinson's Disease (파킨슨병 환자의 경직에 대한 임상적 평가의 정량화)

  • Lee, Jae-Ho;Kim, Ji-Won;Kwon, Yu-Ri;Eom, Gwang-Moon;Koh, Seong-Beom;Kim, Hyung-Sik;Yi, Jeong-Han;Lee, Jeong-Whan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • The purpose of this study was to quantify the clinical assessment of rigidity at wrist in patients with Parkinson's disease. The experimental system was designed that the effect of gravity was negated by restricting motion at the horizontal plane and inertia was predetermined from a biomechanical measurement. Forty five patients with Parkinson's disease participated in this study. Viscoelastic properties were calculated from the experimental data acquired during intermittent passive movement of wrist. Viscoelastic constants correlated well with the rigidity scores of UPDRS, i.e., Spearman's r=0.733 and 0.905 for spring and damping constants, respectively. The results suggest that viscoelastic properties can be used as quantitative measures of rigidity.

Wearable Band Sensor for Posture Recognition towards Prosthetic Control (의수 제어용 동작 인식을 위한 웨어러블 밴드 센서)

  • Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2018
  • The recent prosthetic technologies pursue to control multi-DOFs (degrees-of-freedom) hand and wrist. However, challenges such as high cost, wear-ability, and motion intent recognition for feedback control still remain for the use in daily living activities. The paper proposes a multi-channel knit band sensor to worn easily for surface EMG-based prosthetic control. The knitted electrodes were fabricated with conductive yarn, and the band except the electrodes are knitted using non-conductive yarn which has moisture wicking property. Two types of the knit bands are fabricated such as sixteen-electrodes for eight-channels and thirty-two electrodes for sixteen-channels. In order to substantiate the performance of the biopotential signal acquisition, several experiments are conducted. Signal to noise ratio (SNR) value of the knit band sensor was 18.48 dB. According to various forearm motions including hand and wrist, sixteen-channels EMG signals could be clearly distinguishable. In addition, the pattern recognition performance to control myoelectric prosthesis was verified in that overall classification accuracy of the RMS (root mean squares) filtered EMG signals (97.84%) was higher than that of the raw EMG signals (87.06%).

Improvement of Upper Extremity Function and Leisure Satisfaction of Children with Brain Lesions through Sports Stacking Activities: A Case Study

  • Ae-Lyeong Kwon;Ki-Jeon Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Purpose: This study aimed to investigate changes in upper extremity joints and leisure satisfaction in children with brain lesions through sports stacking activities. Methods: A sports stacking program was conducted on three children with brain lesions who had upper extremity joint limitations and joint range of motion lower than the normal range. It was conducted 10 times, 1 to 2 times a week, 40 minutes each time. Upper extremity joint angles were measured using a goniometer in the order of shoulder, elbow, wrist, and fingers, and leisure satisfaction was measured using a smile evaluation. Results: As a result of measuring the upper extremity joint angles, all three children showed slight angle changes in the shoulder, elbow, and wrist areas. Differences in joint angles appeared differently for each child. Smile evaluation results were evaluated in various psychological, educational, and physical aspects. Only child A was evaluated for Smile Evaluation No. 1. Conclusion: Sports stacking activities changed the upper extremity function of children with brain lesion disorders and showed differences in psychological, physical, and educational aspects of leisure satisfaction. As this is a short-term study result, the change in upper extremity function is minimal, but if sports stacking activities are continued, it will be a rehabilitation program that can prevent upper extremity dysfunction and improve physical strength. Accordingly, continuous attention should be paid to increasing accessibility and enjoyment of daily life according to individual characteristics and level.

Verification of the usefulness of smartphone for wrist swing motion in VR environments (VR 환경에서 손목 스윙 동작에 대한 스마트폰의 유용성 검증)

  • Lee, Chung-Jae;Kim, Jong-Hyun;Lee, Jung;Kim, Sun-Jeong
    • Journal of Korea Game Society
    • /
    • v.17 no.3
    • /
    • pp.53-62
    • /
    • 2017
  • VR content manipulation equipment is not easy for individuals to access because it requires high prices. Especially, in the case of a system for tracking the motion of the user among the VR contents, a separate optical sensor device using an infrared camera is generally used. The disadvantage of the optical sensor equipment is that the measurable range is dependent on the measurement direction when tracking the rotation motion when using only a single device. In order to solve the above problems, this paper shows that the inertial sensor of the smartphone, which is generally owned by the public, can track the rotational motion of the user regardless of the measurement direction . The system using the LeapMotion is used as the reference system, and the system using the smart phone is defined as the evaluation system, and the usability of the evaluation system is verified by comparing the user satisfaction of the two systems.

Robot Navigation Control Using EMG and Acceleration Sensor (근전도 센서와 가속도 센서를 이용한 로봇 이동 제어)

  • Rhee, Ki-Won;Kang, Hee-Su;You, Kyung-Jin;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.108-113
    • /
    • 2011
  • In this paper, we propose a new method for robot navigation control through EMG and acceleration sensors which is attached to wrist. The method can remote control with intuitive motion like driving a car. It decide to control whether or not through EMG signal processing. And motion inferring through signal processing from acceleration sensor. Inferred motion is mapped to control command such as 'Forward', 'Backward', 'Left', 'Right'. Accuracy of each motions are over 99%. Control is capable naturally without time delay. Entire system has been implemented and we verified its utility through demonstration.

New Fixation Method Using Two Crossing Screws and Locking Plate for Cubitus Varus Deformity in Young Adult Elbow: Case Report

  • Kim, Byoung Jin;Seol, Jong Hwan;Kim, Myung Sun
    • Clinics in Shoulder and Elbow
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • Many types of osteotomy have been proposed for the treatment of cubitus varus deformity of the elbow, and various methods for fixation of the osteotomy site have also been described. However, no method has been perfect. We treated two cases of cubitus varus elbow deformity with step-cut osteotomy using a new fixation method with two crossing screws and an anatomically designed locking plate. Active assisted elbow range of motion (ROM) exercise was permitted at postoperative 3 days, after removal of the drainage. Preoperative and postoperative humerus-elbow-wrist angles and ranges of motion of the two patients were compared. At 3 months followup, each patient had recovered the preoperative elbow ROM, and achieved the complete bony union of the osteotomy site and proper correction of the cubitus varus deformity. In addition, the appropriate remodeling of the lateral bony protrusion was observed. Therefore, we introduce a new fixation method for achievement of stable fixation allowing immediate postoperative elbow motion after corrective osteotomy for cubitus varus deformity in young adults.