• Title/Summary/Keyword: Woven fabric

Search Result 501, Processing Time 0.019 seconds

Transverse Flow and Process Modeling on the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong;Lee, Sang-Soo;Park, Min;Kim, Junkyung;Soonho Lim
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.194-203
    • /
    • 2002
  • In resin infusion process(RIP), the fiber and the resin are in contact with each other for an impregnation step and often results in flow-induced defects such as poor fiber wetting and void formation. Resin flow characteristics in transverse direction and process modeling for woven fabric were studied, and the process modeling was applied to the manufacturing of hybrid composite materials. This study also considered the compressibility of woven fabrics in a series of compression force, and it was fitted well to an elastic model equation. Void formation was varied with the processing conditions in the stage of manufacturing composites using RIP. It was concluded from this study that proper combination of pressure build-up and dynamic heating condition makes important factor for flow-induced composite processing.

The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

  • Taraghi, Iman;Fereidoon, Abdolhossein;Mohyeddin, Ali
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.825-834
    • /
    • 2014
  • This manuscript presents an experimental investigation on the effect of Multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (${\leq}1%$) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.

Quasi-Analytical Method of C/SiC Material Properties Characterization (C/SiC 재료의 물성 측정을 위한 준 해석적 방법)

  • Kim, Yeong-K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.437-440
    • /
    • 2010
  • This paper represents a simple and effective calculation method to predict the orthotropic engineering constants for C/SiC woven fabric composite. The method, a quasi-analytical method using the modified equivalent laminated model, idealizes the woven fabric structure as a symmetric three-ply laminate to utilize a classical laminated plate theory. The required initial parameters are in-plane modulus from experiments and crimp ratio of the woven fabric. This study shows its feasibility by demonstrating example to calculate the engineering constants to thickness direction needed for three dimensional thermo-mechanical stress calculations.

  • PDF

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Ibrahim, M.H.W.
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.299-308
    • /
    • 2020
  • This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.

A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite (열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

Prediction of engineering constants for plain and 8-hardness satin woven composites (평직 및 주자직 복합재료의 탄성계수 예측)

  • Byeon, Jun-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1757-1764
    • /
    • 1997
  • The geometric and elastic models based on the unit cell have been proposed to predict the geometric characteristics and the engineering constants of plain and satin woven composites. In the geometric model, length and inclined angle of the yarn crimp and the fiber volume fraction of woven composites have been predicted. In the elastic model, the coordinate transformation has been utilized to transform the elastic constants of the yarn crimp to those of woven composites, and the effective elastic constants have been determined from the volume averaging of the constituent materials. Good correlations between the model predictions and the experimental results of carbon/epoxy and glass/epoxy woven composites have been observed. Based on the model, the effect of various geometric parameters and materials on the three-dimensional elastic properties of woven composites can be identified.

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

Analysis of Image Similarity Index of Woven Fabrics and Virtual Fabrics - Application of Textile Design CAD System and Shuttle Loom - (직물과 가상소재의 화상 유사성 분석 연구 - 수직기 및 텍스타일 CAD시스템 활용 -)

  • Yoon, Jung-Won;Kim, Jong-Jun
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Current global textiles and fashion industries have gradually shifted focus to high value-added, high sensibility, and multi-functional products based on new human-friendliness and sustainable growth technologies. Textile design CAD systems have been developed in conjunction with computer hardware and software sector advances. This study compares the patterns or images of actual woven fabrics and virtual fabrics prepared with a textile design CAD system. In this study, several weave structures (such as fancy yarn weave and patterns) were prepared with a shuttle loom. The woven textile images were taken using a CCD camera. The same weave structure data and yarn data were fed into a textile design CAD system in order to simulate fabric images as similarly as possible. Similarity Index analysis methods allowed for an analysis of the index between the actual fabric specimen and the simulated image of the corresponding fabric. The results showed that repeated small pattern weaves provide superior similarity index values than those of a fancy yarn weave that indicate some irregularities due to fancy yarn attributes. A Complex Wavelet Structural Similarity(CW-SSIM) index resulted in a better index than other methods such as Multi-Scale(MS) SSIM, and Feature Similarity(FS) SSIM, across fabric specimen images. A correlation analysis of the similarity index based on an image analysis and a similarity evaluation by panel members was also implemented.

Characteristics of the Excavated Fabrics from unknown Woman's Tomb, Incheon (인천시 석남동 출토 직물에 관한 연구)

  • Cho, Hyo-Sook;Bae, Soon-Wha
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.10
    • /
    • pp.24-34
    • /
    • 2007
  • The purpose of this study is to examine the pieces of 100 fabrics excavated from unknown woman's tomb Incheon, by analyzing woven methods, names of the fabrics, the kinds and the shapes of the patterns. The characteristics to assume the period of the fabrics are as follows. The geumsundan which was woven peacock insignia at chest and back area was excavated for the first time from the tomb of Joseon. Peacock insignia woven with satin weave using supplementary golden wefts, wrapped gold thread. These kind of fabrics were usually imported in the $15^{th}$ century, according to the old documents, 'Nogeoldae' 'Joseonwangjosilrok' written at the end of Goryeo or early in Joseon. Thus, these relics are from about $15^{th}$ century. From this tomb, the mixture fabric of cotton and ramie are excavated. According to another excavated cases, the mixture fabric of cotton and ramie appears from the period before the Japanese Invasion of Korea in 1592, and after the invasion, there are usually mixture fabric of cotton and silk. This also tells that these fabrics show the characteristics of those from the early period of Joseon Dynasty. The rounded patterns of Jangot is only shown from the fabrics of late Goryeo Dynasty, and the cloud pattern of an upper garment with a squared neckline is shown from the early Joseon Dynasty. So, the patterns from these excavated costumes are ranged from the late Goryeo Dynasty to the early Joseon Dynasty. To assume the period through the overall study above, these relics show the characteristics of the $15^{th}$ century fabric.

A Study on the Tensile Deformation Characteristics of Knits and Appearance Using 3D Digital Virtual Clothing Systems (니트소재의 인장변형 특성과 3D 디지털 클로딩 시스템에 의한 외관표현에 관한 연구)

  • Choi, Kyoung-Me;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.16 no.2
    • /
    • pp.151-162
    • /
    • 2012
  • The industry-wide development of digital technologies has also affected the textile and fashion industries immensely. The applications of 3D technology, virtual reality, and/or augmented reality systems have helped to create novel fashion brands based on the marriage of IT and textile/fashion industries. 3D digital virtual clothing systems have been developed to help the textile and fashion industries in terms of the planning, manufacturing, marketing and sales sectors. So far, most of the development effort for the 3d virtual clothing systems has been focused on the woven fabrics. The characteristics of woven fabrics differ from those of knitted fabric. Since the physical structures and mechanical properties of the knitted fabrics are definitely different from those of woven fabrics, the simulation process for the knitted fabrics should follow different approaches. The loops in a knitted fabric deform easily. The deformation results in a readily stretchable fabric appearance. Cloth simulation mostly employs models that approximate the mechanical properties of linear elastic planes. This simulation scheme does not, however, describe well enough the behavior of knitted fabrics, which deviate largely from the linear isotropic material characteristics. This study aims at characterizing the tensile deformation and surface textures of a knitted fabric product. Tensile deformation curves for the wale, course, and bias direction are analyzed. The surface texture of the knitted fabric is analyzed by using a 3-dimensional scanning device.